File size: 13,755 Bytes
827e826 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff15dcd5510>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff15dcd55a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff15dcd5630>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff15dcd56c0>", "_build": "<function ActorCriticPolicy._build at 0x7ff15dcd5750>", "forward": "<function ActorCriticPolicy.forward at 0x7ff15dcd57e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff15dcd5870>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff15dcd5900>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff15dcd5990>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff15dcd5a20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff15dcd5ab0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff15dcd5b40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff15dcd91c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686859658700089742, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrdoT1S2wQ+AjYevmywVb6/d8G82AygPAAAAAAAAAAAGvtJPR/9mbki6qm6kz7FtbvORLoS9sk5AACAPwAAgD9zkJE9FHiJuoB8VztE7CczxwNBugqydroAAIA/AACAPybjlD1t1Co/dzi9ucU3jb7LbUU9pHequwAAAAAAAAAA8+bVveGprbw59Ro+ZCQlvoqgoL0KSQO/AACAPwAAAABmnpW7rg2FugJQP7rUayq2tmWyOtoRXzkAAIA/AACAPwDoRDwUDIa6AfeQO4rZ4DdZbr+6wleNNgAAgD8AAIA/mrvPPTuqwj4nNAS+FR5xvt4SIr0Agl89AAAAAAAAAADNWsU8NFSNvKNg8ju7nc48dM74PXqkor0AAIA/AACAP4DkID2PggC4RF6BOTzPNzP7VI27xwCduAAAgD8AAIA/s507vSlYLrp57o+7ewZLOK9Gszm4xYA4AACAPwAAgD8AakO8e/KSutbKQroxLka1dyRQugtSYTkAAIA/AACAP02CDz3DbTq6DmFQN8YOpDW9MwM7fY9/tgAAgD8AAIA/jejIPeGQh7ryhSQ6r5g8NSIpbzoYVD65AACAPwAAgD9g+Ak+zFPwPo4QzTobq3K+1bkxPWH6G7sAAAAAAAAAADMblb1cv1u6uCPouvNmBbUzWPa6fgUGOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGXpyt/4IryMAWyUTegDjAF0lEdAloAPeLvTgHV9lChoBkdAYO2aya/h2mgHTegDaAhHQJaCcdHUc4p1fZQoaAZHQGZCCZWq95BoB03oA2gIR0CWg+ZOzposdX2UKGgGR0BlaLzshPj5aAdN6ANoCEdAloQDE74i5nV9lChoBkdAZcSaTfR/mWgHTegDaAhHQJaH7S+g13t1fZQoaAZHQG5plFDv3JxoB02eA2gIR0CWiLsNUfgadX2UKGgGR0Bih6MFUyYYaAdN6ANoCEdAlpQDafzz3HV9lChoBkdAX4VOzposZ2gHTegDaAhHQJaY93C9AX51fZQoaAZHQGZaO5rgwXZoB03oA2gIR0CWmxSbpeNUdX2UKGgGR0BiXe3H7xd6aAdN6ANoCEdAlrxROpKjBXV9lChoBkdAYq2xOclPamgHTegDaAhHQJa84Md92HN1fZQoaAZHQGKH1zIV/MJoB03oA2gIR0CWwLJxvNu+dX2UKGgGR0BgyJ2KVII4aAdN6ANoCEdAlsK2NNrTIHV9lChoBkdAZJiGtZFG5WgHTegDaAhHQJbC4+TvAoJ1fZQoaAZHQGTUE4m1IAhoB03oA2gIR0CWyAFId2gWdX2UKGgGR0BmQ5tk4FRpaAdN6ANoCEdAlshGHP/rB3V9lChoBkfAFJy2x6fJ3mgHTSEBaAhHQJbNMIhQm/p1fZQoaAZHQGEn+kxh2GJoB03oA2gIR0CWzxPCl7+ldX2UKGgGR0BxnbYoRZlnaAdNjgJoCEdAltB5MQEpzHV9lChoBkdAZQ5RSgoPTWgHTegDaAhHQJbRbBi1Aqx1fZQoaAZHQGOSGPPszEdoB03oA2gIR0CW0sX531SPdX2UKGgGR0BmBJyyUs4DaAdN6ANoCEdAltLhKHwgDHV9lChoBkdAZepSZSeiBWgHTegDaAhHQJbYJsSCe3B1fZQoaAZHQGZvMqBmPHVoB03oA2gIR0CW2NrDZUT+dX2UKGgGR0BE+izC1qnFaAdNAAFoCEdAlt8QOFxn4HV9lChoBkdAPswWSEDhcmgHS/9oCEdAlus7rPdEcHV9lChoBkdAZehMwDeTFGgHTegDaAhHQJbufUvwmVt1fZQoaAZHQGFkoqTbFjxoB03oA2gIR0CW8KL6k691dX2UKGgGR0BkQ56Skj5caAdN6ANoCEdAlwx2jwhGIHV9lChoBkdAYGGLiMo+fWgHTegDaAhHQJcQvgbZOBV1fZQoaAZHQGE7iL/CIk9oB03oA2gIR0CXEpwhnrY5dX2UKGgGR0Bks5FmWdEtaAdN6ANoCEdAlxLJuAI6bXV9lChoBkdAZNvtMwlByGgHTegDaAhHQJcZdBsyi251fZQoaAZHQFs24s3AEdNoB03oA2gIR0CXGcyiEg4fdX2UKGgGR0BipUdV/+bWaAdN6ANoCEdAlyAoUrTYunV9lChoBkdAZmQAZsKsuGgHTegDaAhHQJckT9gnc+J1fZQoaAZHQGcAsC9ytFNoB03oA2gIR0CXJae/5+H8dX2UKGgGR0BiGROnEVFhaAdN6ANoCEdAlydwKOT7mHV9lChoBkdAZ5yXyiEg4mgHTegDaAhHQJcnjJhfBvd1fZQoaAZHQGA6Ox0MgEFoB03oA2gIR0CXK8LgXMyKdX2UKGgGR0BlWHUe+23KaAdN6ANoCEdAlzCAeii7CnV9lChoBkdANjU+xGDtgWgHS/xoCEdAlzS2WD6Fd3V9lChoBkdAXEfdoFmnO2gHTegDaAhHQJc5abONYKZ1fZQoaAZHQGC6b5mAbyZoB03oA2gIR0CXPJVKwpvxdX2UKGgGR0BlbQeRxLkCaAdN6ANoCEdAlz6rncL0BnV9lChoBkdAQakOd5IH1WgHTS8BaAhHQJdVeNGViWp1fZQoaAZHQGXExxDLKV9oB03oA2gIR0CXX5ckMTewdX2UKGgGR0BggZjjJdSmaAdN6ANoCEdAl2UZSrHU+nV9lChoBkdAYCdSHdoFmmgHTegDaAhHQJdne+WWyC51fZQoaAZHQGTx+kgwGnpoB03oA2gIR0CXZ7ZK3/gjdX2UKGgGR0BiB8lsxfv4aAdN6ANoCEdAl23iYTj//HV9lChoBkdAZXjh9b5dnmgHTegDaAhHQJduNeJHiFV1fZQoaAZHQF0jBE8aGYdoB03oA2gIR0CXc+UnG828dX2UKGgGR0BcNuRPoFFEaAdN6ANoCEdAl3eFbA1vVHV9lChoBkdAYQVbwBo242gHTegDaAhHQJd4olkYoAp1fZQoaAZHQGLM89nscABoB03oA2gIR0CXektqYZ2qdX2UKGgGR0Bkg7BVMmF8aAdN6ANoCEdAl4AQIQe3hHV9lChoBkdARFuVzIV/MGgHS/xoCEdAl4ifJNj9XXV9lChoBkdAYTx3OfNA1WgHTegDaAhHQJeKsdV/+bV1fZQoaAZHQGW8bmU4aP1oB03oA2gIR0CXkm+KCQLedX2UKGgGR0BenpI1+AmRaAdN6ANoCEdAl5c/hESdv3V9lChoBkdAYje2ycCo0mgHTegDaAhHQJeapiw0O3F1fZQoaAZHQGXIH3L3bmFoB03oA2gIR0CXn/cjZ+QVdX2UKGgGR0BxCRowmE5AaAdNZANoCEdAl7efw/gR9XV9lChoBkdAYzVrVOKwZGgHTegDaAhHQJe4/RXwLE11fZQoaAZHQGc1DTz/ZNBoB03oA2gIR0CXvVZuhsZYdX2UKGgGR0BlekOXmeUZaAdN6ANoCEdAl79ZOnEVFnV9lChoBkdAYAfKLbYbsGgHTegDaAhHQJfFqeCkGiZ1fZQoaAZHQGgHm1YyO7xoB03oA2gIR0CXxfxVQyh0dX2UKGgGR0BmG4pQUHpsaAdN6ANoCEdAl89DJuEVWXV9lChoBkdAYx2TOgQHzGgHTegDaAhHQJfUox0uDjB1fZQoaAZHQGLEVLrX18NoB03oA2gIR0CX2Jguh9LIdX2UKGgGR0BjMpO8CgbqaAdN6ANoCEdAl95aiO/+KnV9lChoBkdAYQwkleF+NWgHTegDaAhHQJfmAeJYT0x1fZQoaAZHQGYkHWrfcetoB03oA2gIR0CX56SMLncMdX2UKGgGR0BtwMkpqh11aAdNfgNoCEdAl+ryS3b213V9lChoBkdAZz24YrJ8v2gHTegDaAhHQJfsJXyRSxZ1fZQoaAZHQGPZpOvdM0xoB03oA2gIR0CX7rmG/N7jdX2UKGgGR0BjBw55qubJaAdN6ANoCEdAl/RK64Ds+nV9lChoBkdAYrQ44Ia99WgHTegDaAhHQJgNsrjHXEt1fZQoaAZHQGTar3bmEGtoB03oA2gIR0CYD5hoduHfdX2UKGgGR0BcSFU2kzoEaAdN6ANoCEdAmBVBBqsU7HV9lChoBkdAY44cn3L3bmgHTegDaAhHQJgXUT0xubZ1fZQoaAZHQGIwnX2/SIBoB03oA2gIR0CYHV/7SApbdX2UKGgGR0Bi1pX+2mYTaAdN6ANoCEdAmB2wVTJhfHV9lChoBkdAcg9Jiy6cy2gHTVkBaAhHQJgfBhw2l2x1fZQoaAZHQHC60hNdqtZoB00EA2gIR0CYIQdCmdiEdX2UKGgGR0BlHTZtelbeaAdN6ANoCEdAmCLcpXp4bHV9lChoBkdAXfq3WnTAnGgHTegDaAhHQJgl3U1AJLN1fZQoaAZHQGMuTW5H3DhoB03oA2gIR0CYKDtqpLmIdX2UKGgGR0BwyfMaCL/CaAdNuAFoCEdAmCp1zltCRnV9lChoBkdAQX4exOclPmgHTQoBaAhHQJgsWmDUVi51fZQoaAZHQFxkcwxnFpBoB03oA2gIR0CYNOSLqD9PdX2UKGgGR0BgmjPOY6XCaAdN6ANoCEdAmDasRpUPx3V9lChoBkdAcBHk9lmOEWgHTbgDaAhHQJg3VZ8rqdJ1fZQoaAZHQEyv0mMOwxFoB0vyaAhHQJg6bns9jgB1fZQoaAZHQF5u0Gu9vjxoB03oA2gIR0CYO1h5xBE8dX2UKGgGR0BjI4/iYLLIaAdN6ANoCEdAmD8k6gdwN3V9lChoBkdAbdfVbzK9wmgHTUMDaAhHQJhBYgA6uGN1fZQoaAZHQHA2vKdQO4JoB01kAmgIR0CYQ6ZnctXgdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |