--- library_name: transformers license: apache-2.0 base_model: google/vit-large-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_emotion_classification_project_4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.51875 --- # image_emotion_classification_project_4 This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.9052 - Accuracy: 0.5188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: reduce_lr_on_plateau - lr_scheduler_warmup_steps: 50 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6977 | 1.0 | 640 | 1.5713 | 0.325 | | 1.7006 | 2.0 | 1280 | 1.4543 | 0.4562 | | 1.6725 | 3.0 | 1920 | 1.6124 | 0.4625 | | 1.2312 | 4.0 | 2560 | 1.6711 | 0.5 | | 0.6097 | 5.0 | 3200 | 1.8838 | 0.5312 | | 1.264 | 6.0 | 3840 | 2.0933 | 0.4875 | | 2.4064 | 7.0 | 4480 | 2.0628 | 0.5188 | | 2.0741 | 8.0 | 5120 | 2.6505 | 0.4625 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3