File size: 5,788 Bytes
3ef28b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright (c) 2023, Albert Gu, Tri Dao.
import warnings
import os
from pathlib import Path

from packaging.version import parse, Version
from setuptools import setup, find_packages
import subprocess


import torch
from torch.utils.cpp_extension import (
    BuildExtension,
    CppExtension,
    CUDAExtension,
    CUDA_HOME,
)

PACKAGE_NAME = "blackmamba"
VERSION = "0.0.1"

with open("README.md", "r", encoding="utf-8") as fh:
    long_description = fh.read()


# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))

# FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels
# SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation
FORCE_BUILD = os.getenv("MAMBA_FORCE_BUILD", "FALSE") == "TRUE"
SKIP_CUDA_BUILD = os.getenv("MAMBA_SKIP_CUDA_BUILD", "FALSE") == "TRUE"
# For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI
FORCE_CXX11_ABI = os.getenv("MAMBA_FORCE_CXX11_ABI", "FALSE") == "TRUE"


def get_cuda_bare_metal_version(cuda_dir):
    raw_output = subprocess.check_output(
        [cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True
    )
    output = raw_output.split()
    release_idx = output.index("release") + 1
    bare_metal_version = parse(output[release_idx].split(",")[0])

    return raw_output, bare_metal_version


def check_if_cuda_home_none(global_option: str) -> None:
    if CUDA_HOME is not None:
        return
    # warn instead of error because user could be downloading prebuilt wheels, so nvcc won't be necessary
    # in that case.
    warnings.warn(
        f"{global_option} was requested, but nvcc was not found.  Are you sure your environment has nvcc available?  "
        "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
        "only images whose names contain 'devel' will provide nvcc."
    )


def append_nvcc_threads(nvcc_extra_args):
    return nvcc_extra_args + ["--threads", "4"]


ext_modules = []
if not SKIP_CUDA_BUILD:
    print("\n\ntorch.__version__  = {}\n\n".format(torch.__version__))
    TORCH_MAJOR = int(torch.__version__.split(".")[0])
    TORCH_MINOR = int(torch.__version__.split(".")[1])

    check_if_cuda_home_none(PACKAGE_NAME)
    # Check, if CUDA11 is installed for compute capability 8.0
    cc_flag = []
    if CUDA_HOME is not None:
        _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
        if bare_metal_version < Version("11.6"):
            raise RuntimeError(
                f"{PACKAGE_NAME} is only supported on CUDA 11.6 and above.  "
                "Note: make sure nvcc has a supported version by running nvcc -V."
            )

    cc_flag.append("-gencode")
    cc_flag.append("arch=compute_70,code=sm_70")
    cc_flag.append("-gencode")
    cc_flag.append("arch=compute_80,code=sm_80")
    if bare_metal_version >= Version("11.8"):
        cc_flag.append("-gencode")
        cc_flag.append("arch=compute_90,code=sm_90")

    # HACK: The compiler flag -D_GLIBCXX_USE_CXX11_ABI is set to be the same as
    # torch._C._GLIBCXX_USE_CXX11_ABI
    # https://github.com/pytorch/pytorch/blob/8472c24e3b5b60150096486616d98b7bea01500b/torch/utils/cpp_extension.py#L920
    if FORCE_CXX11_ABI:
        torch._C._GLIBCXX_USE_CXX11_ABI = True

    ext_modules.append(
        CUDAExtension(
            name="selective_scan_cuda",
            sources=[
                "csrc/selective_scan/selective_scan.cpp",
                "csrc/selective_scan/selective_scan_fwd_fp32.cu",
                "csrc/selective_scan/selective_scan_fwd_fp16.cu",
                "csrc/selective_scan/selective_scan_fwd_bf16.cu",
                "csrc/selective_scan/selective_scan_bwd_fp32_real.cu",
                "csrc/selective_scan/selective_scan_bwd_fp32_complex.cu",
                "csrc/selective_scan/selective_scan_bwd_fp16_real.cu",
                "csrc/selective_scan/selective_scan_bwd_fp16_complex.cu",
                "csrc/selective_scan/selective_scan_bwd_bf16_real.cu",
                "csrc/selective_scan/selective_scan_bwd_bf16_complex.cu",
            ],
            extra_compile_args={
                "cxx": ["-O3", "-std=c++17"],
                "nvcc": append_nvcc_threads(
                    [
                        "-O3",
                        "-std=c++17",
                        "-U__CUDA_NO_HALF_OPERATORS__",
                        "-U__CUDA_NO_HALF_CONVERSIONS__",
                        "-U__CUDA_NO_BFLOAT16_OPERATORS__",
                        "-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
                        "-U__CUDA_NO_BFLOAT162_OPERATORS__",
                        "-U__CUDA_NO_BFLOAT162_CONVERSIONS__",
                        "--expt-relaxed-constexpr",
                        "--expt-extended-lambda",
                        "--use_fast_math",
                        "--ptxas-options=-v",
                        "-lineinfo",
                    ]
                    + cc_flag
                ),
            },
            include_dirs=[Path(this_dir) / "csrc" / "selective_scan"],
        )
    )


setup(
    name=PACKAGE_NAME,
    version=VERSION,
    description="Blackmamba state-space + MoE model",
    long_description=long_description,
    long_description_content_type="text/markdown",
    packages=find_packages(include=['ops'],),
    exclude=(
            "csrc",
            "blackmamba.egg-info",
        ),
    ext_modules=ext_modules,
    cmdclass={"build_ext": BuildExtension},
    python_requires=">=3.7",
    install_requires=[
        "torch",
        "packaging",
        "ninja",
        "einops",
        "triton",
        "transformers",
        "causal_conv1d>=1.1.0",
    ],
)