File size: 2,663 Bytes
6c053f3 66e7346 6c053f3 cb65242 6c053f3 cb65242 66e7346 cb65242 66e7346 6c053f3 66e7346 6c053f3 66e7346 6c053f3 66e7346 6c053f3 66e7346 6c053f3 66e7346 732177e b07d625 9aab0ec 6c053f3 66e7346 6c053f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: mit
base_model: ZhangShenao/SELM-Llama-3-8B-Instruct-iter-2
tags:
- alignment-handbook
- dpo
- trl
- selm
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: SELM-Llama-3-8B-Instruct-iter-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
Self-Exploring Language Models: Active Preference Elicitation for Online Alignment.
# SELM-Llama-3-8B-Instruct-iter-3
This model is a fine-tuned version of [ZhangShenao/SELM-Llama-3-8B-Instruct-iter-2](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-2) using synthetic data based on on the HuggingFaceH4/ultrafeedback_binarized dataset.
## Model description
- Model type: A 8B parameter Llama3-based Self-Exploring Language Models (SELM).
- License: MIT
## Results
| | AlpacaEval 2.0 (LC WR) | MT-Bench (Average) |
|----------------------------------------|------------------------|--------------------|
| [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |        24.31 |       7.93 |
| [SELM-Llama-3-8B-Instruct-iter-1](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-1) |        32.02 |       7.92 |
| [SELM-Llama-3-8B-Instruct-iter-2](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-2) |        35.65 |       8.09 |
| [SELM-Llama-3-8B-Instruct-iter-3](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-3) |        33.47 |       8.29 |
### Training hyperparameters
The following hyperparameters were used during training:
- alpha: 0.0001
- beta: 0.01
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.40.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.19.1
|