|
--- |
|
license: mit |
|
tags: |
|
- alignment-handbook |
|
- dpo |
|
- trl |
|
- selm |
|
base_model: ZhangShenao/SELM-Llama-3-8B-Instruct-iter-2 |
|
datasets: |
|
- HuggingFaceH4/ultrafeedback_binarized |
|
model-index: |
|
- name: SELM-Llama-3-8B-Instruct-iter-3 |
|
results: [] |
|
--- |
|
|
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
|
|
[Self-Exploring Language Models: Active Preference Elicitation for Online Alignment](https://arxiv.org/abs/2405.19332). |
|
|
|
|
|
|
|
# SELM-Llama-3-8B-Instruct-iter-3 |
|
|
|
|
|
|
|
This model is a fine-tuned version of [ZhangShenao/SELM-Llama-3-8B-Instruct-iter-2](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-2) using synthetic data based on on the HuggingFaceH4/ultrafeedback_binarized dataset. |
|
|
|
|
|
|
|
## Model description |
|
|
|
|
|
|
|
- Model type: A 8B parameter Llama3-instruct-based Self-Exploring Language Models (SELM). |
|
- License: MIT |
|
|
|
|
|
|
|
## Results |
|
|
|
|
|
|
|
| | AlpacaEval 2.0 (LC WR) | MT-Bench (Average) | |
|
|----------------------------------------|------------------------|--------------------| |
|
| [SELM-Llama-3-8B-Instruct-iter-3](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-3) |        33.47 |       8.29 | |
|
| [SELM-Llama-3-8B-Instruct-iter-2](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-2) |        35.65 |       8.09 | |
|
| [SELM-Llama-3-8B-Instruct-iter-1](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-1) |        32.02 |       7.92 | |
|
| [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |        24.31 |       7.93 | |
|
|
|
Our model also ranks highly on [WildBench](https://huggingface.co/spaces/allenai/WildBench)! 🔥 |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- alpha: 0.0001 |
|
- beta: 0.01 |
|
- train_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- num_epochs: 1 |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.19.1 |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ZhangShenao__SELM-Llama-3-8B-Instruct-iter-3) |
|
|
|
| Metric |Value| |
|
|-------------------|----:| |
|
|Avg. |23.56| |
|
|IFEval (0-Shot) |69.03| |
|
|BBH (3-Shot) |29.08| |
|
|MATH Lvl 5 (4-Shot)| 5.74| |
|
|GPQA (0-shot) | 1.12| |
|
|MuSR (0-shot) | 5.50| |
|
|MMLU-PRO (5-shot) |30.92| |
|
|
|
|