--- license: mit base_model: ZhangShenao/SELM-Llama-3-8B-Instruct-iter-2 tags: - alignment-handbook - dpo - trl - selm datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: SELM-Llama-3-8B-Instruct-iter-3 results: [] --- Self-Exploring Language Models: Active Preference Elicitation for Online Alignment. # SELM-Llama-3-8B-Instruct-iter-3 This model is a fine-tuned version of [ZhangShenao/SELM-Llama-3-8B-Instruct-iter-2](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-2) using synthetic data based on on the HuggingFaceH4/ultrafeedback_binarized dataset. ## Model description - Model type: A 8B parameter Llama3-based Self-Exploring Language Models (SELM). - License: MIT ## Results |                                        | AlpacaEval 2.0 (LC WR) | MT-Bench (Average) | |----------------------------------------|------------------------|--------------------| | [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |                   24.31         |                7.93       | | [SELM-Llama-3-8B-Instruct-iter-1](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-1) |                   32.02         |                7.92       | | [SELM-Llama-3-8B-Instruct-iter-2](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-2) |                   35.65         |                8.09      | | [SELM-Llama-3-8B-Instruct-iter-3](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-3) |                   33.47         |               8.29       | ### Training hyperparameters The following hyperparameters were used during training: - alpha: 0.0001 - beta: 0.01 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.40.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1