File size: 2,237 Bytes
282e80b 4419242 282e80b 4419242 282e80b 4419242 282e80b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: mt5-small-task2-dataset3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-task2-dataset3
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3113
- Accuracy: 0.704
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3153 | 1.0 | 250 | 0.7513 | 0.526 |
| 0.8878 | 2.0 | 500 | 0.5870 | 0.576 |
| 0.7191 | 3.0 | 750 | 0.5021 | 0.578 |
| 0.5842 | 4.0 | 1000 | 0.4596 | 0.612 |
| 0.5085 | 5.0 | 1250 | 0.4158 | 0.62 |
| 0.4515 | 6.0 | 1500 | 0.3865 | 0.618 |
| 0.4086 | 7.0 | 1750 | 0.3755 | 0.648 |
| 0.3811 | 8.0 | 2000 | 0.3505 | 0.662 |
| 0.3449 | 9.0 | 2250 | 0.3366 | 0.678 |
| 0.3294 | 10.0 | 2500 | 0.3280 | 0.674 |
| 0.3146 | 11.0 | 2750 | 0.3201 | 0.702 |
| 0.305 | 12.0 | 3000 | 0.3146 | 0.69 |
| 0.2972 | 13.0 | 3250 | 0.3130 | 0.702 |
| 0.2819 | 14.0 | 3500 | 0.3106 | 0.696 |
| 0.2828 | 15.0 | 3750 | 0.3113 | 0.704 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|