File size: 4,879 Bytes
fccd23d
 
 
 
 
 
 
 
 
78127e4
fccd23d
 
 
78127e4
fccd23d
2fb63c2
 
78127e4
fccd23d
78127e4
fccd23d
 
78127e4
 
 
 
 
 
fccd23d
 
 
 
 
 
 
 
 
 
 
 
 
 
f7a21c1
 
 
 
 
 
fccd23d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7a21c1
 
 
 
fccd23d
 
 
 
 
f7a21c1
 
 
 
fccd23d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78127e4
 
 
 
 
 
 
fccd23d
 
2fb63c2
 
 
 
 
 
 
 
 
 
fccd23d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
---
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- UniHGKR
widget: []
---

# UniHGKR-base-beir

Our paper: [UniHGKR: Unified Instruction-aware Heterogeneous Knowledge Retrievers](https://arxiv.org/abs/2410.20163).

The UniHGKR-base-beir model is derived from the UniHGKR-base model, further fine-tuned on MS MARCO for evaluation on the BEIR benchmark. We recommend using the [sentence-transformers](https://www.SBERT.net) package to load our model and to perform embedding for paragraphs and sentences.

It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.


## Evaluation on BEIR

The evaluation code can be found at https://github.com/ZhishanQ/UniHGKR.


## Model Details


### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

Use the instructions to achieve the best performance from the model:
```
general_ins = "Given a question, retrieve relevant evidence that can answer the question from all knowledge sources:"
single_source_inst = "Given a question, retrieve relevant evidence that can answer the question from Text sources:"
```

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ZhishanQ/UniHGKR-base-beir")
# Run inference

general_ins = "Given a question, retrieve relevant evidence that can answer the question from all knowledge sources:"
single_source_inst = "Given a question, retrieve relevant evidence that can answer the question from Text sources:"

sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]

# Prepend each sentence with the instruction
updated_sentences = [f"{single_source_inst} {sentence}" for sentence in sentences]

embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.0.0+cu118
- Accelerate: 0.34.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1

### Sentence Transformers Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)


## Citation

If you find this resource useful in your research, please consider giving a like and citation.

```
@article{min2024unihgkr,
  title={UniHGKR: Unified Instruction-aware Heterogeneous Knowledge Retrievers},
  author={Min, Dehai and Xu, Zhiyang and Qi, Guilin and Huang, Lifu and You, Chenyu},
  journal={arXiv preprint arXiv:2410.20163},
  year={2024}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->