--- datasets: [] language: [] library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - UniHGKR-base widget: [] --- # UniHGKR-base Our paper: [UniHGKR: Unified Instruction-aware Heterogeneous Knowledge Retrievers](https://arxiv.org/abs/2410.20163). Please see github repository [UniHGKR](https://github.com/ZhishanQ/UniHGKR/tree/main/code_for_UniHGKR_base) to know how to use this model. We recommend using the [sentence-transformers](https://www.SBERT.net) package to load our model and to perform embedding for paragraphs and sentences. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Training Details ### Framework Versions - Python: 3.8.10 - Sentence Transformers: 3.0.1 - Transformers: 4.44.2 - PyTorch: 2.0.0+cu118 - Accelerate: 0.34.0 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation If you find this resource useful in your research, please consider giving a like and citation. ``` @article{min2024unihgkr, title={UniHGKR: Unified Instruction-aware Heterogeneous Knowledge Retrievers}, author={Min, Dehai and Xu, Zhiyang and Qi, Guilin and Huang, Lifu and You, Chenyu}, journal={arXiv preprint arXiv:2410.20163}, year={2024} } ```