Zihua-Liu-CVer commited on
Commit
44c3947
·
verified ·
1 Parent(s): fbfd57a

Upload model

Browse files
config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ConvNetModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_convnet.ConNetConfig",
7
+ "AutoModel": "modeling_convnet.ConvNetModel"
8
+ },
9
+ "model_type": "convnet",
10
+ "num_classes": 10,
11
+ "torch_dtype": "float32",
12
+ "transformers_version": "4.30.2"
13
+ }
configuration_convnet.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+ class ConNetConfig(PretrainedConfig):
4
+ model_type = "convnet"
5
+
6
+ def __init__(
7
+ self,
8
+ num_classes=10,
9
+ **kwargs,
10
+ ):
11
+ self.num_classes = num_classes
12
+ super().__init__(**kwargs)
13
+
14
+
15
+ if __name__=="__main__":
16
+ convnet_config = ConNetConfig(num_classes=10)
17
+ convnet_config.save_pretrained("custom-convnet")
18
+
19
+ pass
modeling_convnet.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PreTrainedModel
2
+ import torch
3
+ import torch.nn as nn
4
+ from .configuration_convnet import ConNetConfig
5
+
6
+ # Convolutional neural network (two convolutional layers)
7
+ class ConvNet(nn.Module):
8
+ def __init__(self, num_classes=10):
9
+ super(ConvNet, self).__init__()
10
+ self.layer1 = nn.Sequential(
11
+ nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
12
+ nn.BatchNorm2d(16),
13
+ nn.ReLU(),
14
+ nn.MaxPool2d(kernel_size=2, stride=2))
15
+ self.layer2 = nn.Sequential(
16
+ nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
17
+ nn.BatchNorm2d(32),
18
+ nn.ReLU(),
19
+ nn.MaxPool2d(kernel_size=2, stride=2))
20
+ self.fc = nn.Linear(7*7*32, num_classes)
21
+
22
+ def forward(self, x):
23
+ out = self.layer1(x)
24
+ out = self.layer2(out)
25
+ out = out.reshape(out.size(0), -1)
26
+ out = self.fc(out)
27
+ return out
28
+
29
+
30
+
31
+
32
+ class ConvNetModel(PreTrainedModel):
33
+ config_class = ConNetConfig
34
+
35
+ def __init__(self, config):
36
+ super().__init__(config)
37
+ self.model = ConvNet(num_classes=config.num_classes)
38
+
39
+ def forward(self, x):
40
+ out = self.model(x)
41
+
42
+ return out
43
+
44
+
45
+ if __name__=="__main__":
46
+ resnet50d_config = ConNetConfig(num_classes=10)
47
+ resnet50d = ConvNetModel(resnet50d_config)
48
+ resnet50d.save_pretrained("my_models")
49
+ pass
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b50fcbf2d4c2d9559fc3e165d9fe8c282ca44106a7d731b03d01bc768e58c7f
3
+ size 120885