ZoeMC commited on
Commit
5b8d6fc
1 Parent(s): 6df91a1

before_train

Browse files
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/zoez/chemT5",
3
+ "architectures": [
4
+ "T5ForConditionalGeneration"
5
+ ],
6
+ "d_ff": 2048,
7
+ "d_kv": 64,
8
+ "d_model": 768,
9
+ "decoder_start_token_id": 0,
10
+ "dropout_rate": 0.1,
11
+ "eos_token_id": 1,
12
+ "feed_forward_proj": "gated-gelu",
13
+ "initializer_factor": 1.0,
14
+ "is_encoder_decoder": true,
15
+ "layer_norm_epsilon": 1e-06,
16
+ "model_type": "t5",
17
+ "num_decoder_layers": 12,
18
+ "num_heads": 12,
19
+ "num_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 0,
22
+ "relative_attention_num_buckets": 32,
23
+ "tie_word_embeddings": false,
24
+ "transformers_version": "4.11.3",
25
+ "use_cache": true,
26
+ "vocab_size": 32003
27
+ }
pretokenizer.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #https://github.com/XinhaoLi74/SmilesPE/blob/master/SmilesPE/pretokenizer.py
2
+
3
+ def atomwise_tokenizer(smi, exclusive_tokens = None):
4
+ """
5
+ Tokenize a SMILES molecule at atom-level:
6
+ (1) 'Br' and 'Cl' are two-character tokens
7
+ (2) Symbols with bracket are considered as tokens
8
+ exclusive_tokens: A list of specifical symbols with bracket you want to keep. e.g., ['[C@@H]', '[nH]'].
9
+ Other symbols with bracket will be replaced by '[UNK]'. default is `None`.
10
+ """
11
+ import re
12
+ pattern = r"(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"
13
+
14
+ #pattern = r"(\[[^\]]]|Br|Cl|B|C|N|O|P|S|F|c+\%[0-9]{2}|c+\%[0-9]|.+)"
15
+ regex = re.compile(pattern)
16
+ tokens = [token for token in regex.findall(smi)]
17
+
18
+ if exclusive_tokens:
19
+ for i, tok in enumerate(tokens):
20
+ if tok.startswith('['):
21
+ if tok not in exclusive_tokens:
22
+ tokens[i] = '[UNK]'
23
+ return ' '.join(tokens)
24
+ #return tokens
run_t5_mlm_flax.py ADDED
@@ -0,0 +1,802 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Team All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Pretraining the library models for T5-like span-masked language modeling on a text file or a dataset.
18
+ Here is the full list of checkpoints on the hub that can be pretrained by this script:
19
+ https://huggingface.co/models?filter=t5
20
+ """
21
+ # You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
22
+ import logging
23
+ import os
24
+ import sys
25
+ import time
26
+ from dataclasses import dataclass, field
27
+ from pathlib import Path
28
+ from typing import Dict, List, Optional
29
+
30
+ import numpy as np
31
+ from datasets import load_dataset
32
+ from tqdm import tqdm
33
+
34
+ import flax
35
+ import jax
36
+ import jax.numpy as jnp
37
+ import optax
38
+ from flax import jax_utils, traverse_util
39
+ from flax.training import train_state
40
+ from flax.training.common_utils import get_metrics, onehot, shard
41
+ from huggingface_hub import Repository
42
+ from transformers import (
43
+ CONFIG_MAPPING,
44
+ FLAX_MODEL_FOR_MASKED_LM_MAPPING,
45
+ AutoTokenizer,
46
+ BatchEncoding,
47
+ FlaxT5ForConditionalGeneration,
48
+ HfArgumentParser,
49
+ PreTrainedTokenizerBase,
50
+ T5Config,
51
+ TrainingArguments,
52
+ is_tensorboard_available,
53
+ set_seed,
54
+ )
55
+ from transformers.file_utils import get_full_repo_name
56
+ from transformers.models.t5.modeling_flax_t5 import shift_tokens_right
57
+
58
+
59
+ MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
60
+ MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
61
+
62
+
63
+ @dataclass
64
+ class ModelArguments:
65
+ """
66
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
67
+ """
68
+
69
+ model_name_or_path: Optional[str] = field(
70
+ default=None,
71
+ metadata={
72
+ "help": "The model checkpoint for weights initialization."
73
+ "Don't set if you want to train a model from scratch."
74
+ },
75
+ )
76
+ model_type: Optional[str] = field(
77
+ default=None,
78
+ metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
79
+ )
80
+ config_name: Optional[str] = field(
81
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
82
+ )
83
+ tokenizer_name: Optional[str] = field(
84
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
85
+ )
86
+ cache_dir: Optional[str] = field(
87
+ default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
88
+ )
89
+ use_fast_tokenizer: bool = field(
90
+ default=True,
91
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
92
+ )
93
+ dtype: Optional[str] = field(
94
+ default="float32",
95
+ metadata={
96
+ "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
97
+ },
98
+ )
99
+
100
+
101
+ @dataclass
102
+ class DataTrainingArguments:
103
+ """
104
+ Arguments pertaining to what data we are going to input our model for training and eval.
105
+ """
106
+
107
+ dataset_name: Optional[str] = field(
108
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
109
+ )
110
+ dataset_config_name: Optional[str] = field(
111
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
112
+ )
113
+ train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
114
+ validation_file: Optional[str] = field(
115
+ default=None,
116
+ metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
117
+ )
118
+ train_ref_file: Optional[str] = field(
119
+ default=None,
120
+ metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
121
+ )
122
+ validation_ref_file: Optional[str] = field(
123
+ default=None,
124
+ metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
125
+ )
126
+ overwrite_cache: bool = field(
127
+ default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
128
+ )
129
+ validation_split_percentage: Optional[int] = field(
130
+ default=5,
131
+ metadata={
132
+ "help": "The percentage of the train set used as validation set in case there's no validation split"
133
+ },
134
+ )
135
+ max_seq_length: Optional[int] = field(
136
+ default=None,
137
+ metadata={
138
+ "help": "The maximum total input sequence length after tokenization and masking. Sequences longer than this will be truncated. Default to the max input length of the model."
139
+ },
140
+ )
141
+ preprocessing_num_workers: Optional[int] = field(
142
+ default=None,
143
+ metadata={"help": "The number of processes to use for the preprocessing."},
144
+ )
145
+ mlm_probability: float = field(
146
+ default=0.15, metadata={"help": "Ratio of tokens to mask for span masked language modeling loss"}
147
+ )
148
+ mean_noise_span_length: float = field(
149
+ default=3.0,
150
+ metadata={"help": "Mean span length of masked tokens"},
151
+ )
152
+
153
+ def __post_init__(self):
154
+ if self.dataset_name is None and self.train_file is None and self.validation_file is None:
155
+ raise ValueError("Need either a dataset name or a training/validation file.")
156
+ else:
157
+ if self.train_file is not None:
158
+ extension = self.train_file.split(".")[-1]
159
+ assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
160
+ if self.validation_file is not None:
161
+ extension = self.validation_file.split(".")[-1]
162
+ assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
163
+
164
+
165
+ def compute_input_and_target_lengths(inputs_length, noise_density, mean_noise_span_length):
166
+ """This function is copy of `random_spans_helper <https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py#L2466>`__ .
167
+ Training parameters to avoid padding with random_spans_noise_mask.
168
+ When training a model with random_spans_noise_mask, we would like to set the other
169
+ training hyperparmeters in a way that avoids padding.
170
+ This function helps us compute these hyperparameters.
171
+ We assume that each noise span in the input is replaced by extra_tokens_per_span_inputs sentinel tokens,
172
+ and each non-noise span in the targets is replaced by extra_tokens_per_span_targets sentinel tokens.
173
+ This function tells us the required number of tokens in the raw example (for split_tokens())
174
+ as well as the length of the encoded targets. Note that this function assumes
175
+ the inputs and targets will have EOS appended and includes that in the reported length.
176
+ Args:
177
+ inputs_length: an integer - desired length of the tokenized inputs sequence
178
+ noise_density: a float
179
+ mean_noise_span_length: a float
180
+ Returns:
181
+ tokens_length: length of original text in tokens
182
+ targets_length: an integer - length in tokens of encoded targets sequence
183
+ """
184
+
185
+ def _tokens_length_to_inputs_length_targets_length(tokens_length):
186
+ num_noise_tokens = int(round(tokens_length * noise_density))
187
+ num_nonnoise_tokens = tokens_length - num_noise_tokens
188
+ num_noise_spans = int(round(num_noise_tokens / mean_noise_span_length))
189
+ # inputs contain all nonnoise tokens, sentinels for all noise spans
190
+ # and one EOS token.
191
+ _input_length = num_nonnoise_tokens + num_noise_spans + 1
192
+ _output_length = num_noise_tokens + num_noise_spans + 1
193
+ return _input_length, _output_length
194
+
195
+ tokens_length = inputs_length
196
+
197
+ while _tokens_length_to_inputs_length_targets_length(tokens_length + 1)[0] <= inputs_length:
198
+ tokens_length += 1
199
+
200
+ inputs_length, targets_length = _tokens_length_to_inputs_length_targets_length(tokens_length)
201
+
202
+ # minor hack to get the targets length to be equal to inputs length
203
+ # which is more likely to have been set to a nice round number.
204
+ if noise_density == 0.5 and targets_length > inputs_length:
205
+ tokens_length -= 1
206
+ targets_length -= 1
207
+ return tokens_length, targets_length
208
+
209
+
210
+ @flax.struct.dataclass
211
+ class FlaxDataCollatorForT5MLM:
212
+ """
213
+ Data collator used for T5 span-masked language modeling.
214
+ It is made sure that after masking the inputs are of length `data_args.max_seq_length` and targets are also of fixed length.
215
+ For more information on how T5 span-masked language modeling works, one can take a look
216
+ at the `official paper <https://arxiv.org/pdf/1910.10683.pdf>`__
217
+ or the `official code for preprocessing <https://github.com/google-research/text-to-text-transfer-transformer/blob/master/t5/data/preprocessors.py>`__ .
218
+ Args:
219
+ tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
220
+ The tokenizer used for encoding the data.
221
+ noise_density (:obj:`float`):
222
+ The probability with which to (randomly) mask tokens in the input.
223
+ mean_noise_span_length (:obj:`float`):
224
+ The average span length of the masked tokens.
225
+ input_length (:obj:`int`):
226
+ The expected input length after masking.
227
+ target_length (:obj:`int`):
228
+ The expected target length after masking.
229
+ pad_token_id: (:obj:`int`):
230
+ The pad token id of the model
231
+ decoder_start_token_id: (:obj:`int):
232
+ The decoder start token id of the model
233
+ """
234
+
235
+ tokenizer: PreTrainedTokenizerBase
236
+ noise_density: float
237
+ mean_noise_span_length: float
238
+ input_length: int
239
+ target_length: int
240
+ pad_token_id: int
241
+ decoder_start_token_id: int
242
+
243
+ def __call__(self, examples: List[Dict[str, np.ndarray]]) -> Dict[str, np.ndarray]:
244
+
245
+ # convert list to dict and tensorize input
246
+ batch = BatchEncoding(
247
+ {k: np.array([examples[i][k] for i in range(len(examples))]) for k, v in examples[0].items()}
248
+ )
249
+
250
+ input_ids = batch["input_ids"]
251
+ batch_size, expandend_input_length = input_ids.shape
252
+
253
+ mask_indices = np.asarray([self.random_spans_noise_mask(expandend_input_length) for i in range(batch_size)])
254
+ labels_mask = ~mask_indices
255
+
256
+ input_ids_sentinel = self.create_sentinel_ids(mask_indices.astype(np.int8))
257
+ labels_sentinel = self.create_sentinel_ids(labels_mask.astype(np.int8))
258
+
259
+ batch["input_ids"] = self.filter_input_ids(input_ids, input_ids_sentinel)
260
+ batch["labels"] = self.filter_input_ids(input_ids, labels_sentinel)
261
+
262
+ if batch["input_ids"].shape[-1] != self.input_length:
263
+ raise ValueError(
264
+ f"`input_ids` are incorrectly preprocessed. `input_ids` length is {batch['input_ids'].shape[-1]}, but should be {self.target_length}."
265
+ )
266
+
267
+ if batch["labels"].shape[-1] != self.target_length:
268
+ raise ValueError(
269
+ f"`labels` are incorrectly preprocessed. `labels` length is {batch['labels'].shape[-1]}, but should be {self.target_length}."
270
+ )
271
+
272
+ # to check that tokens are correctly proprocessed, one can run `self.tokenizer.batch_decode(input_ids)` and `self.tokenizer.batch_decode(labels)` here...
273
+ batch["decoder_input_ids"] = shift_tokens_right(
274
+ batch["labels"], self.pad_token_id, self.decoder_start_token_id
275
+ )
276
+
277
+ return batch
278
+
279
+ def create_sentinel_ids(self, mask_indices):
280
+ """
281
+ Sentinel ids creation given the indices that should be masked.
282
+ The start indices of each mask are replaced by the sentinel ids in increasing
283
+ order. Consecutive mask indices to be deleted are replaced with `-1`.
284
+ """
285
+ start_indices = mask_indices - np.roll(mask_indices, 1, axis=-1) * mask_indices
286
+ start_indices[:, 0] = mask_indices[:, 0]
287
+
288
+ sentinel_ids = np.where(start_indices != 0, np.cumsum(start_indices, axis=-1), start_indices)
289
+ sentinel_ids = np.where(sentinel_ids != 0, (sentinel_ids + self.tokenizer.vocab_size - 1), 0)
290
+ sentinel_ids -= mask_indices - start_indices
291
+
292
+ return sentinel_ids
293
+
294
+ def filter_input_ids(self, input_ids, sentinel_ids):
295
+ """
296
+ Puts sentinel mask on `input_ids` and fuse consecutive mask tokens into a single mask token by deleting.
297
+ This will reduce the sequence length from `expanded_inputs_length` to `input_length`.
298
+ """
299
+ batch_size = input_ids.shape[0]
300
+
301
+ input_ids_full = np.where(sentinel_ids != 0, sentinel_ids, input_ids)
302
+ input_ids = input_ids_full[input_ids_full > 0].reshape((batch_size, -1))
303
+ input_ids = np.concatenate(
304
+ [input_ids, np.full((batch_size, 1), self.tokenizer.eos_token_id, dtype=np.int32)], axis=-1
305
+ )
306
+ return input_ids
307
+
308
+ def random_spans_noise_mask(self, length):
309
+
310
+ """This function is copy of `random_spans_helper <https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py#L2682>`__ .
311
+ Noise mask consisting of random spans of noise tokens.
312
+ The number of noise tokens and the number of noise spans and non-noise spans
313
+ are determined deterministically as follows:
314
+ num_noise_tokens = round(length * noise_density)
315
+ num_nonnoise_spans = num_noise_spans = round(num_noise_tokens / mean_noise_span_length)
316
+ Spans alternate between non-noise and noise, beginning with non-noise.
317
+ Subject to the above restrictions, all masks are equally likely.
318
+ Args:
319
+ length: an int32 scalar (length of the incoming token sequence)
320
+ noise_density: a float - approximate density of output mask
321
+ mean_noise_span_length: a number
322
+ Returns:
323
+ a boolean tensor with shape [length]
324
+ """
325
+
326
+ orig_length = length
327
+
328
+ num_noise_tokens = int(np.round(length * self.noise_density))
329
+ # avoid degeneracy by ensuring positive numbers of noise and nonnoise tokens.
330
+ num_noise_tokens = min(max(num_noise_tokens, 1), length - 1)
331
+ num_noise_spans = int(np.round(num_noise_tokens / self.mean_noise_span_length))
332
+
333
+ # avoid degeneracy by ensuring positive number of noise spans
334
+ num_noise_spans = max(num_noise_spans, 1)
335
+ num_nonnoise_tokens = length - num_noise_tokens
336
+
337
+ # pick the lengths of the noise spans and the non-noise spans
338
+ def _random_segmentation(num_items, num_segments):
339
+ """Partition a sequence of items randomly into non-empty segments.
340
+ Args:
341
+ num_items: an integer scalar > 0
342
+ num_segments: an integer scalar in [1, num_items]
343
+ Returns:
344
+ a Tensor with shape [num_segments] containing positive integers that add
345
+ up to num_items
346
+ """
347
+ mask_indices = np.arange(num_items - 1) < (num_segments - 1)
348
+ np.random.shuffle(mask_indices)
349
+ first_in_segment = np.pad(mask_indices, [[1, 0]])
350
+ segment_id = np.cumsum(first_in_segment)
351
+ # count length of sub segments assuming that list is sorted
352
+ _, segment_length = np.unique(segment_id, return_counts=True)
353
+ return segment_length
354
+
355
+ noise_span_lengths = _random_segmentation(num_noise_tokens, num_noise_spans)
356
+ nonnoise_span_lengths = _random_segmentation(num_nonnoise_tokens, num_noise_spans)
357
+
358
+ interleaved_span_lengths = np.reshape(
359
+ np.stack([nonnoise_span_lengths, noise_span_lengths], axis=1), [num_noise_spans * 2]
360
+ )
361
+ span_starts = np.cumsum(interleaved_span_lengths)[:-1]
362
+ span_start_indicator = np.zeros((length,), dtype=np.int8)
363
+ span_start_indicator[span_starts] = True
364
+ span_num = np.cumsum(span_start_indicator)
365
+ is_noise = np.equal(span_num % 2, 1)
366
+
367
+ return is_noise[:orig_length]
368
+
369
+
370
+ def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndarray:
371
+ num_samples = len(samples_idx)
372
+ samples_to_remove = num_samples % batch_size
373
+
374
+ if samples_to_remove != 0:
375
+ samples_idx = samples_idx[:-samples_to_remove]
376
+ sections_split = num_samples // batch_size
377
+ batch_idx = np.split(samples_idx, sections_split)
378
+ return batch_idx
379
+
380
+
381
+ def write_train_metric(summary_writer, train_metrics, train_time, step):
382
+ summary_writer.scalar("train_time", train_time, step)
383
+
384
+ train_metrics = get_metrics(train_metrics)
385
+ for key, vals in train_metrics.items():
386
+ tag = f"train_{key}"
387
+ for i, val in enumerate(vals):
388
+ summary_writer.scalar(tag, val, step - len(vals) + i + 1)
389
+
390
+
391
+ def write_eval_metric(summary_writer, eval_metrics, step):
392
+ for metric_name, value in eval_metrics.items():
393
+ summary_writer.scalar(f"eval_{metric_name}", value, step)
394
+
395
+
396
+ if __name__ == "__main__":
397
+ # See all possible arguments in src/transformers/training_args.py
398
+ # or by passing the --help flag to this script.
399
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
400
+
401
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
402
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
403
+ # If we pass only one argument to the script and it's the path to a json file,
404
+ # let's parse it to get our arguments.
405
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
406
+ else:
407
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
408
+
409
+ if (
410
+ os.path.exists(training_args.output_dir)
411
+ and os.listdir(training_args.output_dir)
412
+ and training_args.do_train
413
+ and not training_args.overwrite_output_dir
414
+ ):
415
+ raise ValueError(
416
+ f"Output directory ({training_args.output_dir}) already exists and is not empty."
417
+ "Use --overwrite_output_dir to overcome."
418
+ )
419
+
420
+ # Setup logging
421
+ logging.basicConfig(
422
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
423
+ level="NOTSET",
424
+ datefmt="[%X]",
425
+ )
426
+
427
+ # Log on each process the small summary:
428
+ logger = logging.getLogger(__name__)
429
+
430
+ # Set the verbosity to info of the Transformers logger (on main process only):
431
+ logger.info(f"Training/evaluation parameters {training_args}")
432
+
433
+ # Set seed before initializing model.
434
+ set_seed(training_args.seed)
435
+
436
+ # Handle the repository creation
437
+ if training_args.push_to_hub:
438
+ if training_args.hub_model_id is None:
439
+ repo_name = get_full_repo_name(
440
+ Path(training_args.output_dir).absolute().name, token=training_args.hub_token
441
+ )
442
+ else:
443
+ repo_name = training_args.hub_model_id
444
+ repo = Repository(training_args.output_dir, clone_from=repo_name)
445
+
446
+ # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
447
+ # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
448
+ # (the dataset will be downloaded automatically from the datasets Hub).
449
+ #
450
+ # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
451
+ # 'text' is found. You can easily tweak this behavior (see below).
452
+ if data_args.dataset_name is not None:
453
+ # Downloading and loading a dataset from the hub.
454
+ datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
455
+
456
+ if "validation" not in datasets.keys():
457
+ datasets["validation"] = load_dataset(
458
+ data_args.dataset_name,
459
+ data_args.dataset_config_name,
460
+ split=f"train[:{data_args.validation_split_percentage}%]",
461
+ cache_dir=model_args.cache_dir,
462
+ )
463
+ datasets["train"] = load_dataset(
464
+ data_args.dataset_name,
465
+ data_args.dataset_config_name,
466
+ split=f"train[{data_args.validation_split_percentage}%:]",
467
+ cache_dir=model_args.cache_dir,
468
+ )
469
+ else:
470
+ data_files = {}
471
+ if data_args.train_file is not None:
472
+ data_files["train"] = data_args.train_file
473
+ if data_args.validation_file is not None:
474
+ data_files["validation"] = data_args.validation_file
475
+ extension = data_args.train_file.split(".")[-1]
476
+ if extension == "txt":
477
+ extension = "text"
478
+ datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
479
+
480
+ if "validation" not in datasets.keys():
481
+ datasets["validation"] = load_dataset(
482
+ extension,
483
+ data_files=data_files,
484
+ split=f"train[:{data_args.validation_split_percentage}%]",
485
+ cache_dir=model_args.cache_dir,
486
+ )
487
+ datasets["train"] = load_dataset(
488
+ extension,
489
+ data_files=data_files,
490
+ split=f"train[{data_args.validation_split_percentage}%:]",
491
+ cache_dir=model_args.cache_dir,
492
+ )
493
+ # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
494
+ # https://huggingface.co/docs/datasets/loading_datasets.html.
495
+
496
+ # Load pretrained model and tokenizer
497
+
498
+ if model_args.tokenizer_name:
499
+ tokenizer = AutoTokenizer.from_pretrained(
500
+ model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
501
+ )
502
+ elif model_args.model_name_or_path:
503
+ tokenizer = AutoTokenizer.from_pretrained(
504
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
505
+ )
506
+ else:
507
+ raise ValueError(
508
+ "You are instantiating a new tokenizer from scratch. This is not supported by this script."
509
+ "You can do it from another script, save it, and load it from here, using --tokenizer_name."
510
+ )
511
+
512
+ if model_args.config_name:
513
+ config = T5Config.from_pretrained(
514
+ model_args.config_name, cache_dir=model_args.cache_dir, vocab_size=len(tokenizer)
515
+ )
516
+ elif model_args.model_name_or_path:
517
+ config = T5Config.from_pretrained(
518
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, vocab_size=len(tokenizer)
519
+ )
520
+ else:
521
+ config = CONFIG_MAPPING[model_args.model_type]()
522
+ logger.warning("You are instantiating a new config instance from scratch.")
523
+
524
+ # Preprocessing the datasets.
525
+ # First we tokenize all the texts.
526
+ if training_args.do_train:
527
+ column_names = datasets["train"].column_names
528
+ else:
529
+ column_names = datasets["validation"].column_names
530
+ text_column_name = "text" if "text" in column_names else column_names[0]
531
+
532
+ max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
533
+
534
+ # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
535
+ # Since we make sure that all sequences are of the same length, no attention_mask is needed.
536
+ def tokenize_function(examples):
537
+ return tokenizer(examples[text_column_name], return_attention_mask=False)
538
+
539
+ tokenized_datasets = datasets.map(
540
+ tokenize_function,
541
+ batched=True,
542
+ num_proc=data_args.preprocessing_num_workers,
543
+ remove_columns=column_names,
544
+ load_from_cache_file=not data_args.overwrite_cache,
545
+ )
546
+
547
+ # T5-like span masked language modeling will fuse consecutively masked tokens to a single sentinel token.
548
+ # To ensure that the input length is `max_seq_length`, we need to increase the maximum length
549
+ # according to `mlm_probability` and `mean_noise_span_length`. We can also define the label length accordingly.
550
+ expanded_inputs_length, targets_length = compute_input_and_target_lengths(
551
+ inputs_length=max_seq_length,
552
+ noise_density=data_args.mlm_probability,
553
+ mean_noise_span_length=data_args.mean_noise_span_length,
554
+ )
555
+
556
+ # Main data processing function that will concatenate all texts from our dataset and generate chunks of expanded_inputs_length.
557
+ def group_texts(examples):
558
+ # Concatenate all texts.
559
+ concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
560
+ total_length = len(concatenated_examples[list(examples.keys())[0]])
561
+ # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
562
+ # customize this part to your needs.
563
+ if total_length >= expanded_inputs_length:
564
+ total_length = (total_length // expanded_inputs_length) * expanded_inputs_length
565
+ # Split by chunks of max_len.
566
+ result = {
567
+ k: [t[i : i + expanded_inputs_length] for i in range(0, total_length, expanded_inputs_length)]
568
+ for k, t in concatenated_examples.items()
569
+ }
570
+ return result
571
+
572
+ # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
573
+ # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
574
+ # might be slower to preprocess.
575
+ #
576
+ # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
577
+ # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
578
+ tokenized_datasets = tokenized_datasets.map(
579
+ group_texts,
580
+ batched=True,
581
+ num_proc=data_args.preprocessing_num_workers,
582
+ load_from_cache_file=not data_args.overwrite_cache,
583
+ )
584
+
585
+ # Enable tensorboard only on the master node
586
+ has_tensorboard = is_tensorboard_available()
587
+ if has_tensorboard and jax.process_index() == 0:
588
+ try:
589
+ from flax.metrics.tensorboard import SummaryWriter
590
+
591
+ summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
592
+ except ImportError as ie:
593
+ has_tensorboard = False
594
+ logger.warning(
595
+ f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
596
+ )
597
+ else:
598
+ logger.warning(
599
+ "Unable to display metrics through TensorBoard because the package is not installed: "
600
+ "Please run pip install tensorboard to enable."
601
+ )
602
+
603
+ # Initialize our training
604
+ rng = jax.random.PRNGKey(training_args.seed)
605
+ dropout_rngs = jax.random.split(rng, jax.local_device_count())
606
+
607
+ if model_args.model_name_or_path:
608
+ model = FlaxT5ForConditionalGeneration.from_pretrained(
609
+ model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
610
+ )
611
+ else:
612
+ model = FlaxT5ForConditionalGeneration(config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype))
613
+
614
+ # Data collator
615
+ # This one will take care of randomly masking the tokens.
616
+ data_collator = FlaxDataCollatorForT5MLM(
617
+ tokenizer=tokenizer,
618
+ noise_density=data_args.mlm_probability,
619
+ mean_noise_span_length=data_args.mean_noise_span_length,
620
+ input_length=max_seq_length,
621
+ target_length=targets_length,
622
+ pad_token_id=model.config.pad_token_id,
623
+ decoder_start_token_id=model.config.decoder_start_token_id,
624
+ )
625
+
626
+ # Store some constant
627
+ num_epochs = int(training_args.num_train_epochs)
628
+ train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
629
+ eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
630
+
631
+ num_train_steps = len(tokenized_datasets["train"]) // train_batch_size * num_epochs
632
+
633
+ # Create learning rate schedule
634
+ warmup_fn = optax.linear_schedule(
635
+ init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
636
+ )
637
+ decay_fn = optax.linear_schedule(
638
+ init_value=training_args.learning_rate,
639
+ end_value=0,
640
+ transition_steps=num_train_steps - training_args.warmup_steps,
641
+ )
642
+ linear_decay_lr_schedule_fn = optax.join_schedules(
643
+ schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
644
+ )
645
+
646
+ # We use Optax's "masking" functionality to not apply weight decay
647
+ # to bias and LayerNorm scale parameters. decay_mask_fn returns a
648
+ # mask boolean with the same structure as the parameters.
649
+ # The mask is True for parameters that should be decayed.
650
+ def decay_mask_fn(params):
651
+ flat_params = traverse_util.flatten_dict(params)
652
+ flat_mask = {
653
+ path: (path[-1] != "bias" and path[-2:] not in [("layer_norm", "scale"), ("final_layer_norm", "scale")])
654
+ for path in flat_params
655
+ }
656
+ return traverse_util.unflatten_dict(flat_mask)
657
+
658
+ # create adam optimizer
659
+ if training_args.adafactor:
660
+ # We use the default parameters here to initialize adafactor,
661
+ # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
662
+ optimizer = optax.adafactor(
663
+ learning_rate=linear_decay_lr_schedule_fn,
664
+ )
665
+ else:
666
+ optimizer = optax.adamw(
667
+ learning_rate=linear_decay_lr_schedule_fn,
668
+ b1=training_args.adam_beta1,
669
+ b2=training_args.adam_beta2,
670
+ weight_decay=training_args.weight_decay,
671
+ mask=decay_mask_fn,
672
+ )
673
+
674
+ # Setup train state
675
+ state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer)
676
+
677
+ # Define gradient update step fn
678
+ def train_step(state, batch, dropout_rng):
679
+ dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
680
+
681
+ def loss_fn(params):
682
+ labels = batch.pop("labels")
683
+
684
+ logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
685
+
686
+ # compute loss
687
+ loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])).mean()
688
+
689
+ return loss
690
+
691
+ grad_fn = jax.value_and_grad(loss_fn)
692
+ loss, grad = grad_fn(state.params)
693
+ grad = jax.lax.pmean(grad, "batch")
694
+ new_state = state.apply_gradients(grads=grad)
695
+
696
+ metrics = jax.lax.pmean(
697
+ {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch"
698
+ )
699
+
700
+ return new_state, metrics, new_dropout_rng
701
+
702
+ # Create parallel version of the train step
703
+ p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
704
+
705
+ # Define eval fn
706
+ def eval_step(params, batch):
707
+ labels = batch.pop("labels")
708
+
709
+ logits = model(**batch, params=params, train=False)[0]
710
+
711
+ # compute loss
712
+ loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1]))
713
+
714
+ # compute accuracy
715
+ accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels)
716
+
717
+ # summarize metrics
718
+ metrics = {"loss": loss.mean(), "accuracy": accuracy.mean()}
719
+ metrics = jax.lax.pmean(metrics, axis_name="batch")
720
+
721
+ return metrics
722
+
723
+ p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))
724
+
725
+ # Replicate the train state on each device
726
+ state = jax_utils.replicate(state)
727
+
728
+ train_time = 0
729
+ epochs = tqdm(range(num_epochs), desc="Epoch ... ", position=0)
730
+ for epoch in epochs:
731
+ # ======================== Training ================================
732
+ train_start = time.time()
733
+ train_metrics = []
734
+
735
+ # Create sampling rng
736
+ rng, input_rng = jax.random.split(rng)
737
+
738
+ # Generate an epoch by shuffling sampling indices from the train dataset
739
+ num_train_samples = len(tokenized_datasets["train"])
740
+ train_samples_idx = jax.random.permutation(input_rng, jnp.arange(num_train_samples))
741
+ train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size)
742
+
743
+ # Gather the indexes for creating the batch and do a training step
744
+ for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)):
745
+ samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx]
746
+ model_inputs = data_collator(samples)
747
+
748
+ # Model forward
749
+ model_inputs = shard(model_inputs.data)
750
+ state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
751
+ train_metrics.append(train_metric)
752
+
753
+ cur_step = epoch * (num_train_samples // train_batch_size) + step
754
+
755
+ if cur_step % training_args.logging_steps == 0 and cur_step > 0:
756
+ # Save metrics
757
+ train_metric = jax_utils.unreplicate(train_metric)
758
+ train_time += time.time() - train_start
759
+ if has_tensorboard and jax.process_index() == 0:
760
+ write_train_metric(summary_writer, train_metrics, train_time, cur_step)
761
+
762
+ epochs.write(
763
+ f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})"
764
+ )
765
+
766
+ train_metrics = []
767
+
768
+ if cur_step % training_args.eval_steps == 0 and cur_step > 0:
769
+ # ======================== Evaluating ==============================
770
+ num_eval_samples = len(tokenized_datasets["validation"])
771
+ eval_samples_idx = jnp.arange(num_eval_samples)
772
+ eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size)
773
+
774
+ eval_metrics = []
775
+ for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
776
+ samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx]
777
+ model_inputs = data_collator(samples)
778
+
779
+ # Model forward
780
+ model_inputs = shard(model_inputs.data)
781
+ metrics = p_eval_step(state.params, model_inputs)
782
+ eval_metrics.append(metrics)
783
+
784
+ # get eval metrics
785
+ eval_metrics = get_metrics(eval_metrics)
786
+ eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
787
+
788
+ # Update progress bar
789
+ epochs.write(f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})")
790
+
791
+ # Save metrics
792
+ if has_tensorboard and jax.process_index() == 0:
793
+ write_eval_metric(summary_writer, eval_metrics, cur_step)
794
+
795
+ if cur_step % training_args.save_steps == 0 and cur_step > 0:
796
+ # save checkpoint after each epoch and push checkpoint to the hub
797
+ if jax.process_index() == 0:
798
+ params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
799
+ model.save_pretrained(training_args.output_dir, params=params)
800
+ tokenizer.save_pretrained(training_args.output_dir)
801
+ if training_args.push_to_hub:
802
+ repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False)
t5_tokenizer_model.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import json
3
+ from typing import Iterator, List, Union
4
+
5
+ from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
6
+ from tokenizers.implementations.base_tokenizer import BaseTokenizer
7
+ from tokenizers.models import BPE, Unigram
8
+ from tokenizers.processors import TemplateProcessing
9
+
10
+
11
+ class SentencePieceUnigramTokenizer(BaseTokenizer):
12
+ """
13
+ This class is a copy of `DeDLOC's tokenizer implementation <https://github.com/yandex-research/DeDLOC/blob/main/sahajbert/tokenizer/tokenizer_model.py>`__ .
14
+ Custom SentencePiece Unigram Tokenizer with NMT, NKFC, spaces and lower-casing characters normalization
15
+ Represents the Unigram algorithm, with the pretokenization used by SentencePiece
16
+ """
17
+
18
+ def __init__(
19
+ self,
20
+ replacement: str = "▁",
21
+ add_prefix_space: bool = True,
22
+ unk_token: Union[str, AddedToken] = "<unk>",
23
+ eos_token: Union[str, AddedToken] = "</s>",
24
+ pad_token: Union[str, AddedToken] = "<pad>",
25
+ ):
26
+ self.special_tokens = {
27
+ "pad": {"id": 0, "token": pad_token},
28
+ "eos": {"id": 1, "token": eos_token},
29
+ "unk": {"id": 2, "token": unk_token},
30
+ }
31
+
32
+ self.special_tokens_list = [None] * len(self.special_tokens)
33
+ for token_dict in self.special_tokens.values():
34
+ self.special_tokens_list[token_dict["id"]] = token_dict["token"]
35
+
36
+ tokenizer = Tokenizer(Unigram())
37
+
38
+ tokenizer.normalizer = normalizers.Sequence(
39
+ [
40
+ normalizers.Nmt(),
41
+ normalizers.NFKC(),
42
+ normalizers.Replace(Regex(" {2,}"), " "),
43
+ #commented to be cased
44
+ #normalizers.Lowercase(),
45
+ ]
46
+ )
47
+ tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
48
+ [
49
+ #pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space),
50
+ #pre_tokenizers.Split(pattern='&',behavior='removed',invert=False),
51
+ #pre_tokenizers.Digits(),#individual_digits=True
52
+ pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space),
53
+ #pre_tokenizers.Punctuation(),
54
+ ]
55
+ )
56
+ tokenizer.decoder = decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space)
57
+
58
+ tokenizer.post_processor = TemplateProcessing(
59
+ single=f"$A {self.special_tokens['eos']['token']}",
60
+ special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])],
61
+ )
62
+
63
+ parameters = {
64
+ "model": "SentencePieceUnigram",
65
+ "replacement": replacement,
66
+ "add_prefix_space": add_prefix_space,
67
+ }
68
+
69
+ super().__init__(tokenizer, parameters)
70
+
71
+ def train(
72
+ self,
73
+ files: Union[str, List[str]],
74
+ vocab_size: int = 8000,
75
+ show_progress: bool = True,
76
+ ):
77
+ """Train the model using the given files"""
78
+
79
+ trainer = trainers.UnigramTrainer(
80
+ vocab_size=vocab_size,
81
+ special_tokens=self.special_tokens_list,
82
+ show_progress=show_progress,
83
+ )
84
+
85
+ if isinstance(files, str):
86
+ files = [files]
87
+ self._tokenizer.train(files, trainer=trainer)
88
+
89
+ self.add_unk_id()
90
+
91
+ def train_from_iterator(
92
+ self,
93
+ iterator: Union[Iterator[str], Iterator[Iterator[str]]],
94
+ vocab_size: int = 8000,
95
+ show_progress: bool = True,
96
+ ):
97
+ """Train the model using the given iterator"""
98
+
99
+ trainer = trainers.UnigramTrainer(
100
+ vocab_size=vocab_size,
101
+ special_tokens=self.special_tokens_list,
102
+ show_progress=show_progress,
103
+ )
104
+
105
+ self._tokenizer.train_from_iterator(iterator, trainer=trainer)
106
+
107
+ self.add_unk_id()
108
+
109
+ def add_unk_id(self):
110
+ tokenizer_json = json.loads(self._tokenizer.to_str())
111
+
112
+ tokenizer_json["model"]["unk_id"] = self.special_tokens["unk"]["id"]
113
+
114
+ self._tokenizer = Tokenizer.from_str(json.dumps(tokenizer_json))
115
+
116
+ class SentencePieceBPETokenizer(BaseTokenizer):
117
+ """
118
+ This class is a copy of `DeDLOC's tokenizer implementation <https://github.com/yandex-research/DeDLOC/blob/main/sahajbert/tokenizer/tokenizer_model.py>`__ .
119
+ Custom SentencePiece Unigram Tokenizer with NMT, NKFC, spaces and lower-casing characters normalization
120
+ Represents the Unigram algorithm, with the pretokenization used by SentencePiece
121
+ """
122
+
123
+ def __init__(
124
+ self,
125
+ replacement: str = "▁",
126
+ add_prefix_space: bool = True,
127
+ unk_token: Union[str, AddedToken] = "<unk>",
128
+ eos_token: Union[str, AddedToken] = "</s>",
129
+ pad_token: Union[str, AddedToken] = "<pad>",
130
+ ):
131
+ self.special_tokens = {
132
+ "pad": {"id": 0, "token": pad_token},
133
+ "eos": {"id": 1, "token": eos_token},
134
+ "unk": {"id": 2, "token": unk_token},
135
+ }
136
+
137
+ self.special_tokens_list = [None] * len(self.special_tokens)
138
+ for token_dict in self.special_tokens.values():
139
+ self.special_tokens_list[token_dict["id"]] = token_dict["token"]
140
+
141
+ tokenizer = Tokenizer(BPE())
142
+
143
+ tokenizer.normalizer = normalizers.Sequence(
144
+ [
145
+ normalizers.Nmt(),
146
+ normalizers.NFKC(),
147
+ normalizers.Replace(Regex(" {2,}"), " "),
148
+ #commented to be cased
149
+ #normalizers.Lowercase(),
150
+ ]
151
+ )
152
+ tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
153
+ [
154
+ #pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space),
155
+ pre_tokenizers.Digits(individual_digits=True),
156
+ pre_tokenizers.Punctuation(),
157
+ ]
158
+ )
159
+ #tokenizer.decoder = decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space)
160
+
161
+ tokenizer.post_processor = TemplateProcessing(
162
+ single=f"$A {self.special_tokens['eos']['token']}",
163
+ special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])],
164
+ )
165
+
166
+ parameters = {
167
+ "model": "SentencePieceBPE",
168
+ "replacement": replacement,
169
+ "add_prefix_space": add_prefix_space,
170
+ }
171
+
172
+ super().__init__(tokenizer, parameters)
173
+
174
+ def train(
175
+ self,
176
+ files: Union[str, List[str]],
177
+ vocab_size: int = 8000,
178
+ show_progress: bool = True,
179
+ ):
180
+ """Train the model using the given files"""
181
+
182
+ trainer = trainers.BpeTrainer(
183
+ vocab_size=vocab_size,
184
+ special_tokens=self.special_tokens_list,
185
+ show_progress=show_progress,
186
+ )
187
+
188
+ if isinstance(files, str):
189
+ files = [files]
190
+ self._tokenizer.train(files, trainer=trainer)
191
+
192
+ self.add_unk_id()
193
+
194
+ def train_from_iterator(
195
+ self,
196
+ iterator: Union[Iterator[str], Iterator[Iterator[str]]],
197
+ vocab_size: int = 8000,
198
+ show_progress: bool = True,
199
+ ):
200
+ """Train the model using the given iterator"""
201
+
202
+ trainer = trainers.BpeTrainer(
203
+ vocab_size=vocab_size,
204
+ special_tokens=self.special_tokens_list,
205
+ show_progress=show_progress,
206
+ )
207
+
208
+ self._tokenizer.train_from_iterator(iterator, trainer=trainer)
209
+
210
+ self.add_unk_id()
211
+
212
+ def add_unk_id(self):
213
+ tokenizer_json = json.loads(self._tokenizer.to_str())
214
+
215
+ tokenizer_json["model"]["unk_id"] = self.special_tokens["unk"]["id"]
216
+
217
+ self._tokenizer = Tokenizer.from_str(json.dumps(tokenizer_json))
tokenizer-trainer_atom.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import re
4
+ from t5_tokenizer_model import SentencePieceAtomwiseTokenizer
5
+ from pretokenizer import atomwise_tokenizer
6
+ from tqdm import tqdm
7
+
8
+
9
+
10
+ vocab_size = 32_000
11
+ input_sentence_size = None
12
+
13
+ # Initialize a dataset
14
+ #dataset = load_dataset('csv', data_files='/home/zoez/Chem-T5/train-file.csv',split="train")
15
+ dataset = pd.read_csv('/home/zoez/Chem-T5/train-file.csv')
16
+
17
+ tokenizer = SentencePieceAtomwiseTokenizer(unk_token="<unk>", eos_token="</s>", pad_token="<pad>")
18
+ dataset.columns=['SMILES']
19
+ #print(dataset.columns)
20
+ dataset=pd.DataFrame(columns=['SMILES','SMILESs'],data=dataset)
21
+ dataset.fillna('', inplace=True)
22
+ #print(dataset.iloc[0])
23
+ #trainset=pd.DataFrame(columns=['SMILESs'])
24
+
25
+ for i, line in tqdm(enumerate(dataset['SMILES'])):
26
+ line = re.sub('\d+\t', '',line)
27
+ #print(line)
28
+ newLine=atomwise_tokenizer(line)
29
+ #print(newLine)
30
+ #print(int(i/10))
31
+ dataset.iloc[int(i/50)]['SMILESs']+="&"+newLine
32
+ #print(dataset.loc[int(i/10)]['SMILESs'])
33
+ #dataset.iloc[i]['SMILES']=newLine
34
+ #dataset = dataset.iloc
35
+
36
+ #print(dataset.iloc[5]['SMILESs'])
37
+ # Build an iterator over this dataset
38
+ def batch_iterator(input_sentence_size=None):
39
+ if input_sentence_size is None:
40
+ input_sentence_size = len(dataset)
41
+ batch_length = 100
42
+ for i in range(0, input_sentence_size, batch_length):
43
+ #print(dataset[i: i + batch_length]['SMILES'])
44
+ yield dataset[i: i + batch_length]['SMILESs']
45
+
46
+
47
+ # Train tokenizer
48
+ tokenizer.train_from_iterator(
49
+ iterator=batch_iterator(input_sentence_size=input_sentence_size),
50
+ vocab_size=vocab_size,
51
+ show_progress=True,
52
+ )
53
+
54
+
55
+ # Save files to disk
56
+ tokenizer.save("/home/zoez/chemT5/tokenizer.json")
57
+
58
+
59
+ print(tokenizer.encode(atomwise_tokenizer("O=[N+]([O-])c1ccc(Cl)cc1O=[N+]([O-])c1ccc(Cl)cc1")).tokens)
60
+
61
+ #from transformers import T5Config
62
+
63
+
64
+ #config = T5Config.from_pretrained("google/t5-v1_1-base", vocab_size=tokenizer.get_vocab_size())
65
+ #config.save_pretrained("/home/zoez/chem-T5")
tokenizer-trainer_uni.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import re
4
+ from t5_tokenizer_model import SentencePieceUnigramTokenizer
5
+ #from pretokenizer import atomwise_tokenizer
6
+ from tqdm import tqdm
7
+
8
+
9
+
10
+ vocab_size = 32_000
11
+ input_sentence_size = None
12
+
13
+ # Initialize a dataset
14
+ #dataset = load_dataset('csv', data_files='/home/zoez/Chem-T5/train-file.csv',split="train")
15
+ dataset = pd.read_csv('./chemT5_data.csv')#('/home/zoez/Chem-T5/train-file.csv')
16
+ #print(dataset.iloc[0])
17
+ tokenizer = SentencePieceUnigramTokenizer(unk_token="<unk>", eos_token="</s>", pad_token="<pad>")
18
+ dataset=pd.DataFrame(columns=['SMILES'],data=dataset)
19
+ #dataset.drop('Unnamed: 0',1)
20
+ #print(dataset.columns)
21
+ dataset.columns=['SMILES']
22
+
23
+
24
+ dataset.fillna('', inplace=True)
25
+ #print(dataset.iloc[0])
26
+ #trainset=pd.DataFrame(columns=['SMILESs'])
27
+
28
+ #dataset = dataset.iloc[:10000]
29
+ for i, line in tqdm(enumerate(dataset['SMILES'])):
30
+ #line = re.sub('\d+\t', '',line)
31
+ #print(line)
32
+ newLine=line#atomwise_tokenizer(line)
33
+ #print(newLine)
34
+ #print(int(i/10))
35
+ dataset.iloc[i]['SMILES']=newLine
36
+ #print(dataset.loc[int(i/10)]['SMILESs'])
37
+ #dataset.iloc[i]['SMILES']=newLine
38
+ #dataset = dataset.iloc
39
+
40
+ #print(dataset.iloc[5]['SMILESs'])
41
+ # Build an iterator over this dataset
42
+ def batch_iterator(input_sentence_size=None):
43
+ if input_sentence_size is None:
44
+ input_sentence_size = len(dataset)
45
+ batch_length = 100
46
+ for i in range(0, input_sentence_size, batch_length):
47
+ #print(dataset[i: i + batch_length]['SMILES'])
48
+ yield dataset[i: i + batch_length]['SMILES']
49
+
50
+
51
+ # Train tokenizer
52
+ tokenizer.train_from_iterator(
53
+ iterator=batch_iterator(input_sentence_size=input_sentence_size),
54
+ vocab_size=vocab_size,
55
+ show_progress=True,
56
+ )
57
+
58
+
59
+ # Save files to disk
60
+ tokenizer.save("/home/zoez/chemT5/uni-tokenizer.json")
61
+
62
+
63
+ print(tokenizer.encode("O=[N+]([O-])c1ccc(Cl)cc1").tokens)
64
+
65
+ from transformers import T5Config
66
+
67
+
68
+ config = T5Config.from_pretrained("google/t5-v1_1-base", vocab_size=tokenizer.get_vocab_size())
69
+ config.save_pretrained("./")
train_scprit.sh ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+ python run_t5_mlm_flax.py \
3
+ --output_dir="./" \
4
+ --model_type="t5" \
5
+ --config_name="./" \
6
+ --tokenizer_name="./" \
7
+ --train_file="chemT5_data.csv" \
8
+ --max_seq_length="256" \
9
+ --per_device_train_batch_size="16" \
10
+ --per_device_eval_batch_size="16" \
11
+ --adafactor \
12
+ --learning_rate="0.005" \
13
+ --weight_decay="0.001" \
14
+ --warmup_steps="2000" \
15
+ --overwrite_output_dir \
16
+ --logging_steps="500" \
17
+ --save_steps="10000" \
18
+ --eval_steps="2500" \
19
+ --push_to_hub
20
+
21
+
22
+
try.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #from rdkit import Chem
2
+ import tensorflow as tf
3
+ import torch as pt
4
+ #from t5_tokenizer_model import SentencePieceUnigramTokenizer
5
+ from pretokenizer import atomwise_tokenizer
6
+ from transformers import AutoTokenizer, T5Tokenizer, T5ForConditionalGeneration, T5Config
7
+ from tokenizers import Tokenizer
8
+ import numpy as np
9
+
10
+
11
+ #device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+
13
+
14
+
15
+
16
+ #model = T5ForConditionalGeneration.from_pretrained(pretrained_model_name_or_path="/home/zoez/Chem-T5", from_flax=True)
17
+ tokenizer = AutoTokenizer.from_pretrained("/home/zoez/chemT5")
18
+ #tokenizer = Tokenizer.from_file("/home/zoez/Chem-T5/tokenizer.json")
19
+ #model = model.to(device)
20
+
21
+ print(tokenizer.encode(atomwise_tokenizer("O=[N+]([O-])c1ccc(Cl)cc1O=[N+]([O-])c1ccc(Cl)cc1")).tokens)
22
+
23
+
24
+ # # encode context the generation is conditioned on
25
+ # input_ids1 = tokenizer.encode(": O[N+]([O-])c1ccc(Cl)cc1",return_tensors='pt')
26
+
27
+ # # activate beam search and early_stopping
28
+ # beam_output1 = model.generate(
29
+ # input_ids1,
30
+ # max_length=50,
31
+ # num_beams=5,
32
+ # early_stopping=True
33
+ # )
34
+ # #print(tokenizer.encode("O=[N+]([O-])c1ccc(Cl)cc1").tokens)
35
+ # print("Output: 1\n" + 100 * '-')
36
+ # print(tokenizer.decode(beam_output1[0], skip_special_tokens=True))
37
+
38
+ # # encode context the generation is conditioned on
39
+ # input_ids2 = tokenizer.encode("SMILES: ",return_tensors='pt')
40
+
41
+ # # activate beam search and early_stopping
42
+ # beam_output2 = model.generate(
43
+ # input_ids2,
44
+ # max_length=50,
45
+ # num_beams=9,
46
+ # no_repeat_ngram_size=2,
47
+ # num_return_sequences=9,
48
+ # early_stopping=True
49
+ # )
50
+ # #print(tokenizer.encode("O=[N+]([O-])c1ccc(Cl)cc1").tokens)
51
+ # print("Output: 2\n" + 100 * '-')
52
+ # #print(tokenizer.decode(beam_output2[0], skip_special_tokens=True))
53
+
54
+ # #start = latent_to_string(latent0)
55
+ # #destination = latent_to_string(latent1)
56
+ # mols1 = []
57
+ # step = np.linspace(0,1,100)
58
+ # invalid = 0
59
+ # steps = []
60
+ # step_invalid = []
61
+ # # Generate molcules using interpolation
62
+ # for i, beam in enumerate(beam_output2):
63
+ # #target_latent = (1.0-step[i])*latent0 + step[i]*latent1
64
+ # #string = latent_to_string(target_latent)
65
+ # smiles = tokenizer.decode(beam, skip_special_tokens=True) # when using smies
66
+ # print(tokenizer.decode(beam, skip_special_tokens=True))
67
+ # #smiles = sel.decoder(string) # when using SELFIES
68
+ # mol = Chem.MolFromSmiles(smiles)
69
+ # if mol:
70
+ # if smiles not in mols1:
71
+ # mols1.append(smiles)
72
+ # steps.append(i)
73
+ # else:
74
+ # invalid = invalid + 1
75
+ # step_invalid.append(i)
76
+ # #print("starting mol:", start)
77
+ # #print('destination mol:', destination)
78
+ # print("generated mols:", mols1)
79
+