Exllamav2 quant (exl2 / 6.0 bpw) made with ExLlamaV2 v0.1.1
Other EXL2 quants:
Quant | Model Size | lm_head |
---|---|---|
Experimental RP-oriented MoE, the idea was to get a model that would be equal to or better than Mixtral 8x7B and it's finetunes in RP/ERP tasks.
There's:
Llama 3 SnowStorm v1.15A 4x8B
base_model: NeverSleep_Llama-3-Lumimaid-8B-v0.1-OAS
gate_mode: random
dtype: bfloat16
experts_per_token: 2
experts:
- source_model: Nitral-AI_Poppy_Porpoise-1.0-L3-8B
- source_model: NeverSleep_Llama-3-Lumimaid-8B-v0.1-OAS
- source_model: openlynn_Llama-3-Soliloquy-8B-v2
- source_model: Sao10K_L3-8B-Stheno-v3.1
Models used
- Nitral-AI/Poppy_Porpoise-1.0-L3-8B
- NeverSleep/Llama-3-Lumimaid-8B-v0.1-OAS
- openlynn/Llama-3-Soliloquy-8B-v2
- Sao10K/L3-8B-Stheno-v3.1
Difference(from SnowStorm v1.0)
Vision
Prompt format: Llama 3
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 67.68 |
AI2 Reasoning Challenge (25-Shot) | 62.20 |
HellaSwag (10-Shot) | 81.09 |
MMLU (5-Shot) | 67.89 |
TruthfulQA (0-shot) | 52.11 |
Winogrande (5-shot) | 76.32 |
GSM8k (5-shot) | 66.49 |
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard62.200
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard81.090
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard67.890
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard52.110
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard76.320
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard66.490