File size: 1,963 Bytes
9b349e2 7990770 9b349e2 7990770 9b349e2 7990770 9b349e2 7990770 9b349e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
tags:
- spacy
- token-classification
language:
- fr
widget:
- text: "La fouille du \"Petit Bois\" a mis au jour plusieurs tombes riches en mobilier (à l'instar de vases ornés d'animaux ou de bracelets en schiste). Des ossements de poules (Gallus gallus domesticus), d'oies (Anser anser) et de bœufs (Bos Taurus) sont également à signaler."
- text: "Château-Gaillard est un château fort édifié au XIIe siècle dans l'Eure par Richard Coeur de Lion."
license: cc-by-nc-2.0
model-index:
- name: fr_arches_ner_trf
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8033279872
- name: NER Recall
type: recall
value: 0.8439342881
- name: NER F Score
type: f_score
value: 0.8231306491
---
French model trained to recognize named entities from archaeological reports.
| Feature | Description |
| --- | --- |
| **Name** | `fr_arches` |
| **Version** | `0.0.0` |
| **spaCy** | `>=3.6.1,<3.7.0` |
| **Default Pipeline** | `transformer`, `ner`, `entity_punctuation_removal` |
| **Components** | `transformer`, `ner`, `entity_punctuation_removal` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | 21 archaeological reports from the [Inrap](https://www.inrap.fr/). |
| **License** | `cc-by-nc 2.0` |
| **Author** | [Institut national de recherches archéologiques préventives](https://www.inrap.fr/) |
### Label Scheme
<details>
<summary>View label scheme (15 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`ner`** | `CHRONOLOGIE`, `DECOR`, `EDIFICE`, `ESPECE`, `GPE`, `ID`, `LIEUDIT_SITE`, `LOC`, `MATERIAU`, `MOBILIER`, `ORG`, `PERSONNE`, `PEUPLE_CULTURE`, `STRUCTURE`, `TECHNIQUE_STYLE` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `ENTS_F` | 82.31 |
| `ENTS_P` | 80.33 |
| `ENTS_R` | 84.39 |
| `TRANSFORMER_LOSS` | 218923.98 |
| `NER_LOSS` | 51779.36 | |