File size: 17,047 Bytes
ac16698 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
"""Tokenization classes for ChatGLM."""
from typing import List, Optional, Union
import os
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.utils import logging, PaddingStrategy
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
from typing import Dict
import sentencepiece as spm
import numpy as np
logger = logging.get_logger(__name__)
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"THUDM/chatglm-6b": 2048,
}
class TextTokenizer:
def __init__(self, model_path):
self.sp = spm.SentencePieceProcessor()
self.sp.Load(model_path)
self.num_tokens = self.sp.vocab_size()
def encode(self, text):
return self.sp.EncodeAsIds(text)
def decode(self, ids: List[int]):
return self.sp.DecodeIds(ids)
def tokenize(self, text):
return self.sp.EncodeAsPieces(text)
def convert_tokens_to_string(self, tokens):
return self.sp.DecodePieces(tokens)
def convert_tokens_to_ids(self, tokens):
return [self.sp.PieceToId(token) for token in tokens]
def convert_token_to_id(self, token):
return self.sp.PieceToId(token)
def convert_id_to_token(self, idx):
return self.sp.IdToPiece(idx)
def __len__(self):
return self.num_tokens
class SPTokenizer:
def __init__(
self,
vocab_file,
num_image_tokens=20000,
max_blank_length=80,
byte_fallback=True,
):
assert vocab_file is not None
self.vocab_file = vocab_file
self.num_image_tokens = num_image_tokens
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
self.max_blank_length = max_blank_length
self.byte_fallback = byte_fallback
self.text_tokenizer = TextTokenizer(vocab_file)
def _get_text_tokenizer(self):
return self.text_tokenizer
@staticmethod
def get_blank_token(length: int):
assert length >= 2
return f"<|blank_{length}|>"
@staticmethod
def get_tab_token():
return f"<|tab|>"
@property
def num_text_tokens(self):
return self.text_tokenizer.num_tokens
@property
def num_tokens(self):
return self.num_image_tokens + self.num_text_tokens
@staticmethod
def _encode_whitespaces(text: str, max_len: int = 80):
text = text.replace("\t", SPTokenizer.get_tab_token())
for i in range(max_len, 1, -1):
text = text.replace(" " * i, SPTokenizer.get_blank_token(i))
return text
def _preprocess(self, text: str, linebreak=True, whitespaces=True):
if linebreak:
text = text.replace("\n", "<n>")
if whitespaces:
text = self._encode_whitespaces(text, max_len=self.max_blank_length)
return text
def encode(
self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
) -> List[int]:
"""
@param text: Text to encode.
@param linebreak: Whether to encode newline (\n) in text.
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
"""
text = self._preprocess(text, linebreak, whitespaces)
if not add_dummy_prefix:
text = "<n>" + text
tmp = self._get_text_tokenizer().encode(text)
tokens = [x + self.num_image_tokens for x in tmp]
return tokens if add_dummy_prefix else tokens[2:]
def postprocess(self, text):
text = text.replace("<n>", "\n")
text = text.replace(SPTokenizer.get_tab_token(), "\t")
for i in range(2, self.max_blank_length + 1):
text = text.replace(self.get_blank_token(i), " " * i)
return text
def decode(self, text_ids: List[int]) -> str:
ids = [int(_id) - self.num_image_tokens for _id in text_ids]
ids = [_id for _id in ids if _id >= 0]
text = self._get_text_tokenizer().decode(ids)
text = self.postprocess(text)
return text
def decode_tokens(self, tokens: List[str]) -> str:
text = self._get_text_tokenizer().convert_tokens_to_string(tokens)
text = self.postprocess(text)
return text
def tokenize(
self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
) -> List[str]:
"""
@param text: Text to encode.
@param linebreak: Whether to encode newline (\n) in text.
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
"""
text = self._preprocess(text, linebreak, whitespaces)
if not add_dummy_prefix:
text = "<n>" + text
tokens = self._get_text_tokenizer().tokenize(text)
return tokens if add_dummy_prefix else tokens[2:]
def __getitem__(self, x: Union[int, str]):
if isinstance(x, int):
if x < self.num_image_tokens:
return "<image_{}>".format(x)
else:
return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens)
elif isinstance(x, str):
if x.startswith("<image_") and x.endswith(">") and x[7:-1].isdigit():
return int(x[7:-1])
else:
return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens
else:
raise ValueError("The key should be str or int.")
class ChatGLMTokenizer(PreTrainedTokenizer):
"""
Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding.
Args:
vocab_file (`str`):
Path to the vocabulary file.
"""
vocab_files_names = {"vocab_file": "ice_text.model"}
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask", "position_ids"]
def __init__(
self,
vocab_file,
do_lower_case=False,
remove_space=False,
bos_token='<sop>',
eos_token='<eop>',
end_token='</s>',
mask_token='[MASK]',
gmask_token='[gMASK]',
padding_side="left",
pad_token="<pad>",
unk_token="<unk>",
num_image_tokens=20000,
**kwargs
) -> None:
super().__init__(
do_lower_case=do_lower_case,
remove_space=remove_space,
padding_side=padding_side,
bos_token=bos_token,
eos_token=eos_token,
end_token=end_token,
mask_token=mask_token,
gmask_token=gmask_token,
pad_token=pad_token,
unk_token=unk_token,
num_image_tokens=num_image_tokens,
**kwargs
)
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.vocab_file = vocab_file
self.bos_token = bos_token
self.eos_token = eos_token
self.end_token = end_token
self.mask_token = mask_token
self.gmask_token = gmask_token
self.sp_tokenizer = SPTokenizer(vocab_file, num_image_tokens=num_image_tokens)
""" Initialisation """
@property
def gmask_token_id(self) -> Optional[int]:
if self.gmask_token is None:
return None
return self.convert_tokens_to_ids(self.gmask_token)
@property
def end_token_id(self) -> Optional[int]:
"""
`Optional[int]`: Id of the end of context token in the vocabulary. Returns `None` if the token has not been
set.
"""
if self.end_token is None:
return None
return self.convert_tokens_to_ids(self.end_token)
@property
def vocab_size(self):
""" Returns vocab size """
return self.sp_tokenizer.num_tokens
def get_vocab(self):
""" Returns vocab as a dict """
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def preprocess_text(self, inputs):
if self.remove_space:
outputs = " ".join(inputs.strip().split())
else:
outputs = inputs
if self.do_lower_case:
outputs = outputs.lower()
return outputs
def _tokenize(self, text, **kwargs):
""" Returns a tokenized string. """
text = self.preprocess_text(text)
seq = self.sp_tokenizer.tokenize(text)
return seq
def convert_tokens_to_string(self, tokens: List[str]) -> str:
return self.sp_tokenizer.decode_tokens(tokens)
def _decode(
self,
token_ids: Union[int, List[int]],
**kwargs
) -> str:
if isinstance(token_ids, int):
token_ids = [token_ids]
if len(token_ids) == 0:
return ""
if self.pad_token_id in token_ids: # remove pad
token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
return super()._decode(token_ids, **kwargs)
def _convert_token_to_id(self, token):
""" Converts a token (str) in an id using the vocab. """
return self.sp_tokenizer[token]
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.sp_tokenizer[index]
def save_vocabulary(self, save_directory, filename_prefix=None):
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
filename_prefix (`str`, *optional*):
An optional prefix to add to the named of the saved files.
Returns:
`Tuple(str)`: Paths to the files saved.
"""
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, self.vocab_files_names["vocab_file"]
)
else:
vocab_file = save_directory
with open(self.vocab_file, 'rb') as fin:
proto_str = fin.read()
with open(vocab_file, "wb") as writer:
writer.write(proto_str)
return (vocab_file,)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
gmask_id = self.sp_tokenizer[self.gmask_token]
eos_id = self.sp_tokenizer[self.eos_token]
token_ids_0 = token_ids_0 + [gmask_id, self.sp_tokenizer[self.bos_token]]
if token_ids_1 is not None:
token_ids_0 = token_ids_0 + token_ids_1 + [eos_id]
return token_ids_0
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
"""
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
Args:
encoded_inputs:
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
max_length: maximum length of the returned list and optionally padding length (see below).
Will truncate by taking into account the special tokens.
padding_strategy: PaddingStrategy to use for padding.
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- PaddingStrategy.DO_NOT_PAD: Do not pad
The tokenizer padding sides are defined in self.padding_side:
- 'left': pads on the left of the sequences
- 'right': pads on the right of the sequences
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
return_attention_mask:
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
"""
# Load from model defaults
bos_token_id = self.sp_tokenizer[self.bos_token]
mask_token_id = self.sp_tokenizer[self.mask_token]
gmask_token_id = self.sp_tokenizer[self.gmask_token]
assert self.padding_side == "left"
required_input = encoded_inputs[self.model_input_names[0]]
seq_length = len(required_input)
if padding_strategy == PaddingStrategy.LONGEST:
max_length = len(required_input)
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
# Initialize attention mask if not present.
if max_length is not None:
if "attention_mask" not in encoded_inputs:
if bos_token_id in required_input:
context_length = required_input.index(bos_token_id)
else:
context_length = seq_length
attention_mask = np.ones((1, seq_length, seq_length))
attention_mask = np.tril(attention_mask)
attention_mask[:, :, :context_length] = 1
attention_mask = np.bool_(attention_mask < 0.5)
encoded_inputs["attention_mask"] = attention_mask
if "position_ids" not in encoded_inputs:
if bos_token_id in required_input:
context_length = required_input.index(bos_token_id)
else:
context_length = seq_length
position_ids = np.arange(seq_length, dtype=np.int64)
mask_token = mask_token_id if mask_token_id in required_input else gmask_token_id
if mask_token in required_input:
mask_position = required_input.index(mask_token)
position_ids[context_length:] = mask_position
block_position_ids = np.concatenate(
[np.zeros(context_length, dtype=np.int64),
np.arange(1, seq_length - context_length + 1, dtype=np.int64)])
encoded_inputs["position_ids"] = np.stack([position_ids, block_position_ids], axis=0)
if needs_to_be_padded:
difference = max_length - len(required_input)
if "attention_mask" in encoded_inputs:
encoded_inputs["attention_mask"] = np.pad(encoded_inputs["attention_mask"],
pad_width=[(0, 0), (difference, 0), (difference, 0)],
mode='constant', constant_values=True)
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
"token_type_ids"
]
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
if "position_ids" in encoded_inputs:
encoded_inputs["position_ids"] = np.pad(encoded_inputs["position_ids"],
pad_width=[(0, 0), (difference, 0)])
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
return encoded_inputs
|