a6687543 commited on
Commit
ae9e31c
·
1 Parent(s): 1613883

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 251.55 +/- 38.11
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 321.58 +/- 6.47
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9840e9ecb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9840e9ed40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9840e9edd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9840e9ee60>", "_build": "<function ActorCriticPolicy._build at 0x7f9840e9eef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9840e9ef80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9840e9f010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9840e9f0a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9840e9f130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9840e9f1c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9840e9f250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9840e9f2e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9840e92e80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684367457681537609, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoXwj17DIu6rj/vO4HTajWfMQK7xmNiNAAAgD8AAIA/QKenPfbQa7r2mQG5Ip8bM4kyJrtk1xQ4AACAPwAAgD8zpvo9yTkzP62wTzyuwZq+721bPdFPmL0AAAAAAAAAAGY2AzvDcUu6RfLWO6CyVDfo0sk5sAYsNgAAgD8AAIA/mplcvR+tyLktF2k7nvu5Nt0BSTuDWLU1AACAPwAAgD+a4bg7XDtqutucxTvU13g1t5pGuRMAbzQAAIA/AACAPwBK8jz2JDa6JiQbOjz0mDTSd6C6a0U2uQAAgD8AAIA/ANuJvBTwpLpzpXu7eiuNOJRcJTrOEQg6AACAPwAAgD9m3Gq8hRO8uYQHwrpv0be23zfNOogz5TkAAIA/AACAP2ZKfzzc4Bq8dh7ovCpjCr3TLnW8CtjRvQAAgD8AAIA/ZqY/uylsdLo77d+4vr+9s2bkNbu49gI4AACAPwAAgD8A36i8XMtqulGOgTtruGa2vJRSuxanlLoAAIA/AACAP4CucD0UtoS6YfOcO6tcBDfFiAU74E20ugAAgD8AAIA/zcRVvVzbM7p69b03sc6rMqYmnjoeKeC2AACAPwAAgD8a5dm9ro2MujrHdzn1eG00lauouuTlj7gAAIA/AACAPwDDvz09ekC5dcX9ua+q7LT8t0C7lkYWOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQC/FUS7GvOiMAWyUS8CMAXSUR0CSGqECNjsldX2UKGgGR0BjHOjGkvboaAdN6ANoCEdAkhq8t9QXRHV9lChoBkdAYH8ZWq94/2gHTegDaAhHQJIbpMPBi1B1fZQoaAZHQG3nOZCv5gxoB00RAWgIR0CSI3VQQ+UydX2UKGgGR0AgDdJrcj7iaAdL0GgIR0CSI9QRPGhmdX2UKGgGR0BB1KJ/G2kSaAdL5mgIR0CSJ7ZiuuA7dX2UKGgGR0BhwPerMkhSaAdN6ANoCEdAkihuJHiFTXV9lChoBkdAYK99n9NvfmgHTegDaAhHQJIuIBsANod1fZQoaAZHQGPQEFnqVyFoB03oA2gIR0CSMBokRjBmdX2UKGgGR0AySm1YyO7yaAdL22gIR0CSRqPszEaVdX2UKGgGR0AXWjSG8EmqaAdNRAFoCEdAkklALNOdoXV9lChoBkdAY1iSg5BC2WgHTegDaAhHQJJP1XDFZPl1fZQoaAZHQFylulXRw61oB03oA2gIR0CSU940Mw10dX2UKGgGR0A7RoSL61staAdNXAFoCEdAkliMTJyQxXV9lChoBkdAZSEIMSbpeWgHTegDaAhHQJJZe7ROUMZ1fZQoaAZHQGNfi3ocJdBoB03oA2gIR0CSX6EBbOeKdX2UKGgGR0BhwcT8HfMwaAdN6ANoCEdAkmBQQL/jsHV9lChoBkdAXRJAu7HyVmgHTegDaAhHQJJiqtjkMkR1fZQoaAZHQGJB2C/XXiBoB03oA2gIR0CSZOZFG5MDdX2UKGgGR0BgLKc/dIoWaAdN6ANoCEdAkmZfGQ0XQHV9lChoBkdARiTbYbsF+2gHS95oCEdAkmfWs7uDz3V9lChoBkdAPGoIF/x2CGgHTTsBaAhHQJJojQhOgxt1fZQoaAZHQGOQuiWVu79oB03oA2gIR0CSazwx33YddX2UKGgGR0BaZaaXrt3OaAdN6ANoCEdAkmxSZF5OanV9lChoBkdAZXWQDmr8zmgHTegDaAhHQJJ1swfyPMl1fZQoaAZHQFxnA4GUwBZoB03oA2gIR0CSey2sJY1YdX2UKGgGR0BauVHBk7OnaAdN6ANoCEdAkoIJDRc/uHV9lChoBkdAXNlF5OafBmgHTegDaAhHQJKLsF1SwW51fZQoaAZHQBM6AWi1y/9oB005AWgIR0CSn1A7PppwdX2UKGgGR0BaoKpo9LYgaAdN6ANoCEdAkp+01AJLNHV9lChoBkdAYrM9dNWU8mgHTegDaAhHQJKmritJWeZ1fZQoaAZHQBKwkLQXyiFoB0vEaAhHQJKt6uA7Ppp1fZQoaAZHQFz6rFfiPyVoB03oA2gIR0CSr8mReTmodX2UKGgGR0BB0L5ZbILgaAdLxmgIR0CStQlrdnCgdX2UKGgGR0BhmSWzF+/haAdN6ANoCEdAkrdRq9GqgnV9lChoBkdAXpuXkYGdJGgHTegDaAhHQJK3/itJWeZ1fZQoaAZHQGHlYHHFPzpoB03oA2gIR0CSulkeZG8VdX2UKGgGR0BhmoZOzposaAdN6ANoCEdAkryHWattAXV9lChoBkdAXGF/G2kSEmgHTegDaAhHQJK99/kNnXd1fZQoaAZHQGN2uoHcDbJoB03oA2gIR0CSv28TzunddX2UKGgGR0BkOaDmKZUlaAdN6ANoCEdAksAe6unuRnV9lChoBkdAZIx/smfGuWgHTegDaAhHQJLCjIZIg/11fZQoaAZHQGC0eXqqwQloB03oA2gIR0CSw6D0lJHzdX2UKGgGR0BoMK2a2F37aAdN6ANoCEdAktHCBwuM/HV9lChoBkdAXnxJ17pmmWgHTegDaAhHQJLY3YJ3PiV1fZQoaAZHQGETDZ13dKxoB03oA2gIR0CS4t55Z8rqdX2UKGgGR0BjldLSNOuaaAdN6ANoCEdAkuW91dPcjHV9lChoBkdAYPk2phnanWgHTegDaAhHQJMHvQHAymB1fZQoaAZHQDkXUwztTk1oB0vyaAhHQJMITSJCSid1fZQoaAZHQGJ1VVYISlFoB03oA2gIR0CTCcH+6y0KdX2UKGgGR0Bjkwm5UcXFaAdN6ANoCEdAkw9Tn7pFC3V9lChoBkdAX8m6f8MuvmgHTegDaAhHQJMRcaDPGAF1fZQoaAZHQGDVqCpWFOBoB03oA2gIR0CTEheFL39KdX2UKGgGR0BiU95fMOf/aAdN6ANoCEdAkxRJnctXgnV9lChoBkdAYPIUpNKywGgHTegDaAhHQJMWTIDHOr11fZQoaAZHQGKg/ATIvJ1oB03oA2gIR0CTF59hZyMldX2UKGgGR0BiYaf4AS39aAdN6ANoCEdAkxjqB7NSqHV9lChoBkdAYymGQjlgdGgHTegDaAhHQJMZhVrAP/d1fZQoaAZHQGGqbJnxri5oB03oA2gIR0CTG8hlDneSdX2UKGgGR0BuehgE2YOUaAdNLAFoCEdAkxwhnBciW3V9lChoBkdAZGC078vVVmgHTegDaAhHQJMcsjeKsMl1fZQoaAZHQENX/5LytmtoB0vmaAhHQJMeIy0rsjV1fZQoaAZHQDhUW/JvHcVoB0uoaAhHQJMh6NaQmu11fZQoaAZHQGOGn6Mzdk9oB03oA2gIR0CTKaTaTOgQdX2UKGgGR0BiEVnZkCmuaAdN6ANoCEdAkzAr5M10knV9lChoBkdAYcfUMG5c1WgHTegDaAhHQJM7npIMBp51fZQoaAZHQGBweoUBXCFoB03oA2gIR0CTXCCJGe+VdX2UKGgGR0Bm1bOu7pV0aAdN6ANoCEdAk1ymLgn+h3V9lChoBkdAY105H3Dej2gHTegDaAhHQJNjUSBbwBp1fZQoaAZHQGBwDASFoL5oB03oA2gIR0CTZXUr08NhdX2UKGgGR0Bg3B2r4nF6aAdN6ANoCEdAk2igjD8+A3V9lChoBkdAYupyCnP3SWgHTegDaAhHQJNq9eAuqWF1fZQoaAZHQGRpfs3Q2MtoB03oA2gIR0CTbHbVSXMRdX2UKGgGR0BhT2dkJ8fFaAdN6ANoCEdAk2347A+IM3V9lChoBkdAYjKOz6ab4WgHTegDaAhHQJNxZYlpoK51fZQoaAZHQGNT1NxlxwRoB03oA2gIR0CTcdEn9ehPdX2UKGgGR0BkC/OKO1fFaAdN6ANoCEdAk3J9MfzSTnV9lChoBkdAYq46mwaBJGgHTegDaAhHQJN08zAN5MV1fZQoaAZHQGV5jWkJrtVoB03oA2gIR0CTePHbAUL2dX2UKGgGR0BhAvTTfBN3aAdN6ANoCEdAk4DBSYPXkHV9lChoBkdAXz1DlYEGJWgHTegDaAhHQJOHa20AtFt1fZQoaAZHQGSG9kauOjtoB03oA2gIR0CTk8JbMX7+dX2UKGgGR0Bh0u65Gz8haAdN6ANoCEdAk7Wp+lTFVHV9lChoBkdAZTBcnmaH9GgHTegDaAhHQJO2NdHDrJN1fZQoaAZHQGQ2mZE2HcloB03oA2gIR0CTvRO4XoC/dX2UKGgGR0BelLq6e5FxaAdN6ANoCEdAk79VAZ88cXV9lChoBkdAY+DC9h7VrmgHTegDaAhHQJPCgQQL/jt1fZQoaAZHQGUUCOvMbFVoB03oA2gIR0CTxOXZoPCmdX2UKGgGR0BiNA95hSccaAdN6ANoCEdAk8ZgR9PUKHV9lChoBkdAY0xXXAdn02gHTegDaAhHQJPH41O0svt1fZQoaAZHQE4UvHtF8XxoB00iAWgIR0CTyhfNA1NydX2UKGgGR0BinI0Q9RrKaAdN6ANoCEdAk8taPsAvMHV9lChoBkdAY1QsRxtHhGgHTegDaAhHQJPLw5YHPeJ1fZQoaAZHQGGotqxkd3loB03oA2gIR0CTzG0G/vfCdX2UKGgGR0Bj9Bk9U0emaAdN6ANoCEdAk83zwH7gsXV9lChoBkdAYkmJvYODrmgHTegDaAhHQJPRkWk8A7x1fZQoaAZHQDYCb/ffoA5oB0vcaAhHQJPYRib2Dg91fZQoaAZHQGNkAOSW7e5oB03oA2gIR0CT2Ee5Fw1jdX2UKGgGR0BiiSfzz3AVaAdN6ANoCEdAk94bDuSfUXV9lChoBkdAYXj15jYqXmgHTegDaAhHQJPosiA2AG11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3778da4670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3778da4700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3778da4790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3778da4820>", "_build": "<function ActorCriticPolicy._build at 0x7f3778da48b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3778da4940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3778da49d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3778da4a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3778da4af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3778da4b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3778da4c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3778da4ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3778f7fcc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 344042492, "action_noise": null, "start_time": 1684372995405168368, "learning_rate": 0.0003, "tensorboard_log": "tensorboard-logs/ppo-LunarLander-v2-stable-reward-penalize-time/LunarLander-v2", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALP0H71IK5i6IrErs16NR69wWD85Lj/PMwAAgD8AAIA/mim0usMFSLqT1+S8do7mPM8oFDsfDcU9AACAPwAAgD/N88Q8AT6nPnljqL1hjzW/Et28PfzvSr0AAAAAAAAAAM0rn731O5c/MiwpvqwpSr9fJxK+UMgIvgAAAAAAAAAAM0mcvNsTorwCsLO+kA2evTynUT2yvBm/AACAPwAAgD8AxEa8Cv0lu/buor0zIAQ8JvZpPOZo7rwAAIA/AACAP9reYr7slms/8810vkauIL994Ai/iDW8vQAAAAAAAAAAZpX5vFwvSbqeCMYzMY7QLMbhnbt/ssGzAACAPwAAgD/Nm8o8SHOPuo7M3jpeooI10LtQN1sQAboAAIA/AACAP7ueh75GV5I/+DdcviuOGr98RTK/et4xvQAAAAAAAAAA5tECviAK7D6ofrA9pd5Bv4Dhdr6tdeE9AAAAAAAAAAAN7iQ+3qBYP3jbAz6cTgy/BSoAP1X+Dj4AAAAAAAAAAE3hWr22LFm82ApaPg9Niz3QsqC997GSvAAAgD8AAIA/TaovvXuc+rrncaa8tuWGPJo7pLuIcGo9AACAPwAAgD/Nmmi9NokWvGhATrpAYqY7Wc13vZJmnDwAAIA/AACAP+20Ab7JsCc+7s+wPtstFb/d2DC8CpyePgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHNxX8wYciMAWyUS6SMAXSUR0CJBV6Q/5ckdX2UKGgGR0ByFz+qBEroaAdLh2gIR0CJO1rqt5lfdX2UKGgGR0Bxx99roGILaAdLkmgIR0CJO2q+ajN7dX2UKGgGR0BvpMkD6nBMaAdLmGgIR0CJO3zErGzbdX2UKGgGR0BwCPZGrjo7aAdLkGgIR0CJO+Jm/WUbdX2UKGgGR0Byb9hG6PKdaAdLhmgIR0CJPD7gKnejdX2UKGgGR0BwbPqzJIUbaAdLoWgIR0CJPG34sVcmdX2UKGgGR0BwBAwIt16maAdLnGgIR0CJPJ2nKnvVdX2UKGgGR0Bxdoyj59E1aAdLhmgIR0CJPKq94/u9dX2UKGgGR0B0PdjBl+VkaAdLt2gIR0CJPT47A+INdX2UKGgGR0Bx4JkauOjqaAdLvmgIR0CJPbpVS4vwdX2UKGgGR0BxVLWattALaAdLp2gIR0CJPgvB7/n4dX2UKGgGR0BxuiNWEK3NaAdLo2gIR0CJPgoAn2IwdX2UKGgGR0BysJIz3yqdaAdLsGgIR0CJPlwCKaXsdX2UKGgGR0Bxiph1DBuXaAdLk2gIR0CJPnlUZNwjdX2UKGgGR0ByxQBGQSzxaAdLt2gIR0CJQJJwsGxEdX2UKGgGR0BxX8SamXPaaAdLpGgIR0CJQL9RaX8gdX2UKGgGR0Bwk3EXLvCuaAdLkWgIR0CJQUzDXOGCdX2UKGgGR0BxsIQ04zacaAdLnWgIR0CJQgiB5HEudX2UKGgGR0Byh6psGgSOaAdLiGgIR0CJQmg/TspodX2UKGgGR0ByetJAdGRWaAdLo2gIR0CJQtwOOKfndX2UKGgGR0Bz2x/lQuVYaAdLsWgIR0CJQv0U47zTdX2UKGgGR0BwTxCMPz4DaAdLl2gIR0CJQzigkC3gdX2UKGgGR0Bxn1XHR1HOaAdLoWgIR0CJQzKdxyXEdX2UKGgGR0ByMFwYLsrvaAdLimgIR0CJQ11dPci4dX2UKGgGR0BPK1Rk3CKraAdLemgIR0CJQ5IpYs/ZdX2UKGgGR0Bz7fL0SRKZaAdLuWgIR0CJRGhllK9PdX2UKGgGR0BwLdjwx33YaAdLlmgIR0CJRRYRNATqdX2UKGgGR0Bzax/XoTwlaAdLsGgIR0CJRX+l0o0AdX2UKGgGR0ByXnwc5sCUaAdLsWgIR0CJRfY6GQCCdX2UKGgGR0Byycc2itaIaAdLqmgIR0CJRhsMy8BddX2UKGgGR0By0ecBltj1aAdLomgIR0CJSAqtHQQddX2UKGgGR0B0Qx+LFXJYaAdLpmgIR0CJSGGucMEzdX2UKGgGR0Bw6GTINmUXaAdLi2gIR0CJSS9IwudxdX2UKGgGR0Bw4imJm/WUaAdLsWgIR0CJSWRf4REndX2UKGgGR0Bzk5EXtShraAdLm2gIR0CJSiBVdX1bdX2UKGgGR0BzW6+sYEW7aAdLtmgIR0CJSkw35vcadX2UKGgGR0BxxQnw5NoKaAdLoGgIR0CJSoDOC5EudX2UKGgGR0ByBVcpsoDxaAdLtmgIR0CJSpxJd0JXdX2UKGgGR0BzFMjfNzKcaAdLsmgIR0CJSxyLAHmjdX2UKGgGR0BzZQ/bCaZyaAdLwGgIR0CJS2vt+kP+dX2UKGgGR0BzQVEE1VHXaAdLr2gIR0CJS2CwKSgXdX2UKGgGR0ByU9n003wTaAdLj2gIR0CJS4wqy4WldX2UKGgGR0ByK0otthuwaAdLq2gIR0CJTALyc0+DdX2UKGgGR0BycbmPo3aSaAdLr2gIR0CJTdWxyGSIdX2UKGgGR0BNs0tRNyo5aAdLaWgIR0CJTepPRArydX2UKGgGR0B0BU22oegdaAdLwGgIR0CJTglUp/gBdX2UKGgGR0BzFC32EkB0aAdLuGgIR0CJTiYUnG83dX2UKGgGR0BzGP6O5rgwaAdLnmgIR0CJTwqFyq+8dX2UKGgGR0Bzgd/hESdwaAdLuGgIR0CJUG5TZQHidX2UKGgGR0BxBndtVJcxaAdLj2gIR0CJUMplSS/1dX2UKGgGR0BuyNszl90BaAdLkWgIR0CJUMbVjI7vdX2UKGgGR0BzkoWGh24eaAdLoWgIR0CJURpRoAXEdX2UKGgGR0Bz9//FR51OaAdLtWgIR0CJURF3IMjNdX2UKGgGR0Bwnjy4FzMiaAdLjmgIR0CJUTuWKMvRdX2UKGgGR0Bv0sYXO4XoaAdLomgIR0CJUUsT37DVdX2UKGgGR0BxvFjPOY6XaAdLmmgIR0CJUeoJAt4BdX2UKGgGR0BxiolqrR0EaAdLjmgIR0CJUgHcDbJwdX2UKGgGR0Bw7km9g4OuaAdLnmgIR0CJUgQVbiZOdX2UKGgGR0ByjewPiDNAaAdLsGgIR0CJUsxbB42TdX2UKGgGR0Byu3W6K+BZaAdLkmgIR0CJU8PDpC8fdX2UKGgGR0Bwb935eqrBaAdLnGgIR0CJVFbLU1AJdX2UKGgGR0Bzfqg6EJ0GaAdLpmgIR0CJVKQIUrTZdX2UKGgGR0BxcK4uscQzaAdLlmgIR0CJVO7Ackt3dX2UKGgGR0Bx9kwdsBQvaAdLtWgIR0CJVV9c8kledX2UKGgGR0BwUoIdELH/aAdLmmgIR0CJVnNEgGKRdX2UKGgGR0BwaKdy1eByaAdLkWgIR0CJVsCHRCyAdX2UKGgGR0Bwr9rO7g89aAdLnmgIR0CJV5MINVindX2UKGgGR0ByQoSmIj4YaAdLqmgIR0CJV5HUc4o7dX2UKGgGR0Bv3SPZIxxlaAdLo2gIR0CJV77RfF72dX2UKGgGR0Bw/lqGlANYaAdLlGgIR0CJWA/VRUFTdX2UKGgGR0BxKpNUOuq4aAdLmWgIR0CJWCnb7CSBdX2UKGgGR0BynHfuTibVaAdLsGgIR0CJWCkTpPhydX2UKGgGR0Bz98GKQ7tBaAdLu2gIR0CJWF5LRKHxdX2UKGgGR0BxIiYeDFqBaAdLoWgIR0CJWX/ACW/rdX2UKGgGR0By+L0OEug6aAdLuWgIR0CJWZOARTS9dX2UKGgGR0ByTBl/YrauaAdLqmgIR0CJWt72L5ymdX2UKGgGR0BylCV9nbqRaAdLnmgIR0CJW1cZccENdX2UKGgGR0ByEabWmP5paAdLn2gIR0CJW7hESdvsdX2UKGgGR0BzNjNRm9QGaAdLtWgIR0CJXBvTgEU1dX2UKGgGR0Bwxak8A7xNaAdLs2gIR0CJXUeq7yxzdX2UKGgGR0BygVDa4+bFaAdLm2gIR0CJXae0Xxe+dX2UKGgGR0By6S9CeEqUaAdLjmgIR0CJXeEmICU5dX2UKGgGR0ByOGH0se4kaAdLjmgIR0CJXg4ZMtbtdX2UKGgGR0BzvEjzI3iraAdLrGgIR0CJXinTAnD0dX2UKGgGR0BwfkTviLl4aAdLiWgIR0CJXj9jPOY6dX2UKGgGR0ByqqM0gr6MaAdLomgIR0CJXsJxeb/fdX2UKGgGR0BymcbsF+uvaAdLomgIR0CJXzIkqto0dX2UKGgGR0B0asJ0GNaRaAdLtmgIR0CJYBnSv1UVdX2UKGgGR0BxAFE3Kji5aAdLnGgIR0CJYHuJk5IZdX2UKGgGR0ByOp8JD3M7aAdLwmgIR0CJYM4yXUpedX2UKGgGR0BxgPZmI0qIaAdLqGgIR0CJYOiTt9hJdX2UKGgGR0BzW44BFNL2aAdLn2gIR0CJYeb6P8yfdX2UKGgGR0BwRFNSIgvEaAdLj2gIR0CJYf+m3vx6dX2UKGgGR0BxbRkGzKLbaAdLrGgIR0CJY6r0aqCIdX2UKGgGR0Bx8j0QK8cuaAdLimgIR0CJY9g7YChfdX2UKGgGR0Bwhfin5zo2aAdLm2gIR0CJZAomXw9adX2UKGgGR0Bz6xGe+VTraAdLzGgIR0CJZHZbILgGdX2UKGgGR0BwmpTER8MNaAdLnmgIR0CJZI+kgwGodX2UKGgGR0BwGc2gnMMaaAdLlmgIR0CJZJyuIRAbdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 13053, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRy9ob21lL21hcmt1cy9zcmMvYWkvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgUMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxHL2hvbWUvbWFya3VzL3NyYy9haS9zdGFibGUtYmFzZWxpbmVzMy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVYAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVfgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRXgrUxb2HLoJ5cOWc/TAqqQCMA2luY5SKEDelaqfryv5maWKS+NOk72d1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2-TP.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24b7e970b24a235df84f581d533d3febc103582f279bc2c8f54135acdf6056d6
3
+ size 147016
ppo-LunarLander-v2-TP/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2-TP/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3778da4670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3778da4700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3778da4790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3778da4820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3778da48b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3778da4940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3778da49d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3778da4a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3778da4af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3778da4b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3778da4c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3778da4ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f3778f7fcc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": 344042492,
28
+ "action_noise": null,
29
+ "start_time": 1684372995405168368,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": "tensorboard-logs/ppo-LunarLander-v2-stable-reward-penalize-time/LunarLander-v2",
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALP0H71IK5i6IrErs16NR69wWD85Lj/PMwAAgD8AAIA/mim0usMFSLqT1+S8do7mPM8oFDsfDcU9AACAPwAAgD/N88Q8AT6nPnljqL1hjzW/Et28PfzvSr0AAAAAAAAAAM0rn731O5c/MiwpvqwpSr9fJxK+UMgIvgAAAAAAAAAAM0mcvNsTorwCsLO+kA2evTynUT2yvBm/AACAPwAAgD8AxEa8Cv0lu/buor0zIAQ8JvZpPOZo7rwAAIA/AACAP9reYr7slms/8810vkauIL994Ai/iDW8vQAAAAAAAAAAZpX5vFwvSbqeCMYzMY7QLMbhnbt/ssGzAACAPwAAgD/Nm8o8SHOPuo7M3jpeooI10LtQN1sQAboAAIA/AACAP7ueh75GV5I/+DdcviuOGr98RTK/et4xvQAAAAAAAAAA5tECviAK7D6ofrA9pd5Bv4Dhdr6tdeE9AAAAAAAAAAAN7iQ+3qBYP3jbAz6cTgy/BSoAP1X+Dj4AAAAAAAAAAE3hWr22LFm82ApaPg9Niz3QsqC997GSvAAAgD8AAIA/TaovvXuc+rrncaa8tuWGPJo7pLuIcGo9AACAPwAAgD/Nmmi9NokWvGhATrpAYqY7Wc13vZJmnDwAAIA/AACAP+20Ab7JsCc+7s+wPtstFb/d2DC8CpyePgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHNxX8wYciMAWyUS6SMAXSUR0CJBV6Q/5ckdX2UKGgGR0ByFz+qBEroaAdLh2gIR0CJO1rqt5lfdX2UKGgGR0Bxx99roGILaAdLkmgIR0CJO2q+ajN7dX2UKGgGR0BvpMkD6nBMaAdLmGgIR0CJO3zErGzbdX2UKGgGR0BwCPZGrjo7aAdLkGgIR0CJO+Jm/WUbdX2UKGgGR0Byb9hG6PKdaAdLhmgIR0CJPD7gKnejdX2UKGgGR0BwbPqzJIUbaAdLoWgIR0CJPG34sVcmdX2UKGgGR0BwBAwIt16maAdLnGgIR0CJPJ2nKnvVdX2UKGgGR0Bxdoyj59E1aAdLhmgIR0CJPKq94/u9dX2UKGgGR0B0PdjBl+VkaAdLt2gIR0CJPT47A+INdX2UKGgGR0Bx4JkauOjqaAdLvmgIR0CJPbpVS4vwdX2UKGgGR0BxVLWattALaAdLp2gIR0CJPgvB7/n4dX2UKGgGR0BxuiNWEK3NaAdLo2gIR0CJPgoAn2IwdX2UKGgGR0BysJIz3yqdaAdLsGgIR0CJPlwCKaXsdX2UKGgGR0Bxiph1DBuXaAdLk2gIR0CJPnlUZNwjdX2UKGgGR0ByxQBGQSzxaAdLt2gIR0CJQJJwsGxEdX2UKGgGR0BxX8SamXPaaAdLpGgIR0CJQL9RaX8gdX2UKGgGR0Bwk3EXLvCuaAdLkWgIR0CJQUzDXOGCdX2UKGgGR0BxsIQ04zacaAdLnWgIR0CJQgiB5HEudX2UKGgGR0Byh6psGgSOaAdLiGgIR0CJQmg/TspodX2UKGgGR0ByetJAdGRWaAdLo2gIR0CJQtwOOKfndX2UKGgGR0Bz2x/lQuVYaAdLsWgIR0CJQv0U47zTdX2UKGgGR0BwTxCMPz4DaAdLl2gIR0CJQzigkC3gdX2UKGgGR0Bxn1XHR1HOaAdLoWgIR0CJQzKdxyXEdX2UKGgGR0ByMFwYLsrvaAdLimgIR0CJQ11dPci4dX2UKGgGR0BPK1Rk3CKraAdLemgIR0CJQ5IpYs/ZdX2UKGgGR0Bz7fL0SRKZaAdLuWgIR0CJRGhllK9PdX2UKGgGR0BwLdjwx33YaAdLlmgIR0CJRRYRNATqdX2UKGgGR0Bzax/XoTwlaAdLsGgIR0CJRX+l0o0AdX2UKGgGR0ByXnwc5sCUaAdLsWgIR0CJRfY6GQCCdX2UKGgGR0Byycc2itaIaAdLqmgIR0CJRhsMy8BddX2UKGgGR0By0ecBltj1aAdLomgIR0CJSAqtHQQddX2UKGgGR0B0Qx+LFXJYaAdLpmgIR0CJSGGucMEzdX2UKGgGR0Bw6GTINmUXaAdLi2gIR0CJSS9IwudxdX2UKGgGR0Bw4imJm/WUaAdLsWgIR0CJSWRf4REndX2UKGgGR0Bzk5EXtShraAdLm2gIR0CJSiBVdX1bdX2UKGgGR0BzW6+sYEW7aAdLtmgIR0CJSkw35vcadX2UKGgGR0BxxQnw5NoKaAdLoGgIR0CJSoDOC5EudX2UKGgGR0ByBVcpsoDxaAdLtmgIR0CJSpxJd0JXdX2UKGgGR0BzFMjfNzKcaAdLsmgIR0CJSxyLAHmjdX2UKGgGR0BzZQ/bCaZyaAdLwGgIR0CJS2vt+kP+dX2UKGgGR0BzQVEE1VHXaAdLr2gIR0CJS2CwKSgXdX2UKGgGR0ByU9n003wTaAdLj2gIR0CJS4wqy4WldX2UKGgGR0ByK0otthuwaAdLq2gIR0CJTALyc0+DdX2UKGgGR0BycbmPo3aSaAdLr2gIR0CJTdWxyGSIdX2UKGgGR0BNs0tRNyo5aAdLaWgIR0CJTepPRArydX2UKGgGR0B0BU22oegdaAdLwGgIR0CJTglUp/gBdX2UKGgGR0BzFC32EkB0aAdLuGgIR0CJTiYUnG83dX2UKGgGR0BzGP6O5rgwaAdLnmgIR0CJTwqFyq+8dX2UKGgGR0Bzgd/hESdwaAdLuGgIR0CJUG5TZQHidX2UKGgGR0BxBndtVJcxaAdLj2gIR0CJUMplSS/1dX2UKGgGR0BuyNszl90BaAdLkWgIR0CJUMbVjI7vdX2UKGgGR0BzkoWGh24eaAdLoWgIR0CJURpRoAXEdX2UKGgGR0Bz9//FR51OaAdLtWgIR0CJURF3IMjNdX2UKGgGR0Bwnjy4FzMiaAdLjmgIR0CJUTuWKMvRdX2UKGgGR0Bv0sYXO4XoaAdLomgIR0CJUUsT37DVdX2UKGgGR0BxvFjPOY6XaAdLmmgIR0CJUeoJAt4BdX2UKGgGR0BxiolqrR0EaAdLjmgIR0CJUgHcDbJwdX2UKGgGR0Bw7km9g4OuaAdLnmgIR0CJUgQVbiZOdX2UKGgGR0ByjewPiDNAaAdLsGgIR0CJUsxbB42TdX2UKGgGR0Byu3W6K+BZaAdLkmgIR0CJU8PDpC8fdX2UKGgGR0Bwb935eqrBaAdLnGgIR0CJVFbLU1AJdX2UKGgGR0Bzfqg6EJ0GaAdLpmgIR0CJVKQIUrTZdX2UKGgGR0BxcK4uscQzaAdLlmgIR0CJVO7Ackt3dX2UKGgGR0Bx9kwdsBQvaAdLtWgIR0CJVV9c8kledX2UKGgGR0BwUoIdELH/aAdLmmgIR0CJVnNEgGKRdX2UKGgGR0BwaKdy1eByaAdLkWgIR0CJVsCHRCyAdX2UKGgGR0Bwr9rO7g89aAdLnmgIR0CJV5MINVindX2UKGgGR0ByQoSmIj4YaAdLqmgIR0CJV5HUc4o7dX2UKGgGR0Bv3SPZIxxlaAdLo2gIR0CJV77RfF72dX2UKGgGR0Bw/lqGlANYaAdLlGgIR0CJWA/VRUFTdX2UKGgGR0BxKpNUOuq4aAdLmWgIR0CJWCnb7CSBdX2UKGgGR0BynHfuTibVaAdLsGgIR0CJWCkTpPhydX2UKGgGR0Bz98GKQ7tBaAdLu2gIR0CJWF5LRKHxdX2UKGgGR0BxIiYeDFqBaAdLoWgIR0CJWX/ACW/rdX2UKGgGR0By+L0OEug6aAdLuWgIR0CJWZOARTS9dX2UKGgGR0ByTBl/YrauaAdLqmgIR0CJWt72L5ymdX2UKGgGR0BylCV9nbqRaAdLnmgIR0CJW1cZccENdX2UKGgGR0ByEabWmP5paAdLn2gIR0CJW7hESdvsdX2UKGgGR0BzNjNRm9QGaAdLtWgIR0CJXBvTgEU1dX2UKGgGR0Bwxak8A7xNaAdLs2gIR0CJXUeq7yxzdX2UKGgGR0BygVDa4+bFaAdLm2gIR0CJXae0Xxe+dX2UKGgGR0By6S9CeEqUaAdLjmgIR0CJXeEmICU5dX2UKGgGR0ByOGH0se4kaAdLjmgIR0CJXg4ZMtbtdX2UKGgGR0BzvEjzI3iraAdLrGgIR0CJXinTAnD0dX2UKGgGR0BwfkTviLl4aAdLiWgIR0CJXj9jPOY6dX2UKGgGR0ByqqM0gr6MaAdLomgIR0CJXsJxeb/fdX2UKGgGR0BymcbsF+uvaAdLomgIR0CJXzIkqto0dX2UKGgGR0B0asJ0GNaRaAdLtmgIR0CJYBnSv1UVdX2UKGgGR0BxAFE3Kji5aAdLnGgIR0CJYHuJk5IZdX2UKGgGR0ByOp8JD3M7aAdLwmgIR0CJYM4yXUpedX2UKGgGR0BxgPZmI0qIaAdLqGgIR0CJYOiTt9hJdX2UKGgGR0BzW44BFNL2aAdLn2gIR0CJYeb6P8yfdX2UKGgGR0BwRFNSIgvEaAdLj2gIR0CJYf+m3vx6dX2UKGgGR0BxbRkGzKLbaAdLrGgIR0CJY6r0aqCIdX2UKGgGR0Bx8j0QK8cuaAdLimgIR0CJY9g7YChfdX2UKGgGR0Bwhfin5zo2aAdLm2gIR0CJZAomXw9adX2UKGgGR0Bz6xGe+VTraAdLzGgIR0CJZHZbILgGdX2UKGgGR0BwmpTER8MNaAdLnmgIR0CJZI+kgwGodX2UKGgGR0BwGc2gnMMaaAdLlmgIR0CJZJyuIRAbdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 13053,
55
+ "n_steps": 1024,
56
+ "gamma": 0.999,
57
+ "gae_lambda": 0.98,
58
+ "ent_coef": 0.01,
59
+ "vf_coef": 0.5,
60
+ "max_grad_norm": 0.5,
61
+ "batch_size": 64,
62
+ "n_epochs": 4,
63
+ "clip_range": {
64
+ ":type:": "<class 'function'>",
65
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRy9ob21lL21hcmt1cy9zcmMvYWkvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgUMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxHL2hvbWUvbWFya3VzL3NyYy9haS9zdGFibGUtYmFzZWxpbmVzMy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
66
+ },
67
+ "clip_range_vf": null,
68
+ "normalize_advantage": true,
69
+ "target_kl": null,
70
+ "observation_space": {
71
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWVYAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
73
+ "dtype": "float32",
74
+ "bounded_below": "[ True True True True True True True True]",
75
+ "bounded_above": "[ True True True True True True True True]",
76
+ "_shape": [
77
+ 8
78
+ ],
79
+ "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
80
+ "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
81
+ "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
82
+ "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
83
+ "_np_random": null
84
+ },
85
+ "action_space": {
86
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
87
+ ":serialized:": "gAWVfgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRXgrUxb2HLoJ5cOWc/TAqqQCMA2luY5SKEDelaqfryv5maWKS+NOk72d1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
88
+ "n": "4",
89
+ "start": "0",
90
+ "_shape": [],
91
+ "dtype": "int64",
92
+ "_np_random": "Generator(PCG64)"
93
+ },
94
+ "n_envs": 16,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2-TP/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9cc936a1e77bd319ec48a72e66a919063a00b206452ea55e119d310485626d0
3
+ size 88057
ppo-LunarLander-v2-TP/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c517ae16554eceec29ea404c6a65bbe28eb69e9790c2a7dd58c8d7e00f2b10ab
3
+ size 43329
ppo-LunarLander-v2-TP/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-TP/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 251.5496425466169, "std_reward": 38.106910691151256, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-18T00:22:41.241110"}
 
1
+ {"mean_reward": 321.577218, "std_reward": 6.468698999999987, "is_deterministic": true, "n_eval_episodes": 2, "eval_datetime": "2023-05-18T02:24:36.178806"}