--- tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: msi-resnet18 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.7618322547900013 - name: F1 type: f1 value: 0.7033583563808773 - name: Precision type: precision value: 0.7032472149798531 - name: Recall type: recall value: 0.7034695329170948 --- # msi-resnet18 This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4869 - Accuracy: 0.7618 - F1: 0.7034 - Precision: 0.7032 - Recall: 0.7035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6225 | 1.0 | 1970 | 0.6131 | 0.6718 | 0.5197 | 0.6298 | 0.4424 | | 0.5749 | 2.0 | 3941 | 0.5577 | 0.7138 | 0.6061 | 0.6771 | 0.5486 | | 0.5506 | 3.0 | 5911 | 0.5347 | 0.7355 | 0.6367 | 0.7096 | 0.5773 | | 0.5304 | 4.0 | 7882 | 0.5114 | 0.7501 | 0.6615 | 0.7250 | 0.6082 | | 0.5196 | 5.0 | 9852 | 0.5057 | 0.7503 | 0.6932 | 0.6838 | 0.7028 | | 0.5125 | 6.0 | 11823 | 0.4920 | 0.7610 | 0.6983 | 0.7078 | 0.6890 | | 0.5016 | 7.0 | 13793 | 0.4929 | 0.7578 | 0.7055 | 0.6890 | 0.7228 | | 0.4871 | 8.0 | 15764 | 0.4796 | 0.7683 | 0.7042 | 0.7222 | 0.6870 | | 0.5069 | 9.0 | 17734 | 0.4766 | 0.7743 | 0.6996 | 0.7512 | 0.6545 | | 0.5059 | 10.0 | 19700 | 0.4869 | 0.7618 | 0.7034 | 0.7032 | 0.7035 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0