aari1995 commited on
Commit
183fad2
1 Parent(s): d1f632f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -1
README.md CHANGED
@@ -1,3 +1,78 @@
1
  ---
2
- license: apache-2.0
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - de
4
  ---
5
+ # ***WIP***
6
+ (Please bear with me)
7
+
8
+
9
+ _Hermes + Leo + German AWQ = Germeo_
10
+
11
+ # Germeo-7B-AWQ
12
+
13
+ A German-English language model merged from [Hermeo-7B](https://https://huggingface.co/malteos/hermeo-7b).
14
+
15
+ ### Model details
16
+
17
+ - **Merged from:** [leo-mistral-hessianai-7b-chat](https://huggingface.co/LeoLM/leo-mistral-hessianai-7b-chat) and [DPOpenHermes-7B-v2](https://huggingface.co/openaccess-ai-collective/DPOpenHermes-7B-v2)
18
+ - **Model type:** Causal decoder-only transformer language model
19
+ - **Languages:** German replies with English Understanding Capabilities
20
+ - **Calibration Data:** [LeoLM/OpenSchnabeltier](https://huggingface.co/datasets/LeoLM/OpenSchnabeltier)
21
+
22
+ ### Quantization Procedure and Use Case:
23
+
24
+ The speciality of this model is that it solely replies in German, independently from the system message or prompt.
25
+ Within the AWQ-process I introduced OpenSchnabeltier as calibration data for the model to stress the importance of German Tokens.
26
+
27
+
28
+ ### Usage
29
+
30
+
31
+ ```python
32
+ # setup [autoawq](https://github.com/casper-hansen/AutoAWQ)
33
+ from awq import AutoAWQForCausalLM
34
+ from transformers import AutoTokenizer, TextStreamer
35
+
36
+ quant_path = "aari1995/germeo-7b-awq"
37
+
38
+ # Load model
39
+ model = AutoAWQForCausalLM.from_quantized(quant_path, fuse_layers=True)
40
+ tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True)
41
+ ```
42
+
43
+ ### Inference:
44
+ ```python
45
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
46
+
47
+ # Convert prompt to tokens
48
+ prompt_template = """\
49
+ <|system|>
50
+ You're a helpful assistant</s>
51
+ <|user|>
52
+ {prompt}</s>
53
+ <|assistant|>"""
54
+
55
+ prompt = "Schreibe eine Stellenanzeige für Data Scientist bei AXA!"
56
+
57
+ tokens = tokenizer(
58
+ prompt_template.format(prompt=prompt),
59
+ return_tensors='pt'
60
+ ).input_ids.cuda()
61
+
62
+ # Generate output
63
+ generation_output = model.generate(
64
+ tokens,
65
+ streamer=streamer,
66
+ max_new_tokens=1012
67
+ )
68
+ # tokenizer.decode(generation_output.flatten())
69
+ ```
70
+
71
+ ### Acknowledgements and Special Thanks
72
+
73
+ - Thank you [malteos](https://https://huggingface.co/malteos/) for hermeo, without this it would not be possible! (and all your other contributions)
74
+ - Thanks to the authors of the base models: [Mistral](https://mistral.ai/), [LAION](https://laion.ai/), [HessianAI](https://hessian.ai/), [Open Access AI Collective](https://huggingface.co/openaccess-ai-collective), [@teknium](https://huggingface.co/teknium), [@bjoernp](https://huggingface.co/bjoernp)
75
+ - Also [@bjoernp](https://huggingface.co/bjoernp) thank you for your contribution and LeoLM for OpenSchnabeltier.
76
+
77
+ ## Evaluation and Benchmarks
78
+ TBA