--- language: - de --- # ***WIP*** (Please bear with me) _Hermes + Leo + German AWQ = Germeo_ # Germeo-7B-AWQ A German-English language model merged from [Hermeo-7B](https://https://huggingface.co/malteos/hermeo-7b). ### Model details - **Merged from:** [leo-mistral-hessianai-7b-chat](https://huggingface.co/LeoLM/leo-mistral-hessianai-7b-chat) and [DPOpenHermes-7B-v2](https://huggingface.co/openaccess-ai-collective/DPOpenHermes-7B-v2) - **Model type:** Causal decoder-only transformer language model - **Languages:** German replies with English Understanding Capabilities - **Calibration Data:** [LeoLM/OpenSchnabeltier](https://huggingface.co/datasets/LeoLM/OpenSchnabeltier) ### Quantization Procedure and Use Case: The speciality of this model is that it solely replies in German, independently from the system message or prompt. Within the AWQ-process I introduced OpenSchnabeltier as calibration data for the model to stress the importance of German Tokens. ### Usage ```python # setup [autoawq](https://github.com/casper-hansen/AutoAWQ) from awq import AutoAWQForCausalLM from transformers import AutoTokenizer, TextStreamer quant_path = "aari1995/germeo-7b-awq" # Load model model = AutoAWQForCausalLM.from_quantized(quant_path, fuse_layers=True) tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True) ``` ### Inference: ```python streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # Convert prompt to tokens prompt_template = """\ <|system|> You're a helpful assistant <|user|> {prompt} <|assistant|>""" prompt = "Schreibe eine Stellenanzeige für Data Scientist bei AXA!" tokens = tokenizer( prompt_template.format(prompt=prompt), return_tensors='pt' ).input_ids.cuda() # Generate output generation_output = model.generate( tokens, streamer=streamer, max_new_tokens=1012 ) # tokenizer.decode(generation_output.flatten()) ``` ### Acknowledgements and Special Thanks - Thank you [malteos](https://https://huggingface.co/malteos/) for hermeo, without this it would not be possible! (and all your other contributions) - Thanks to the authors of the base models: [Mistral](https://mistral.ai/), [LAION](https://laion.ai/), [HessianAI](https://hessian.ai/), [Open Access AI Collective](https://huggingface.co/openaccess-ai-collective), [@teknium](https://huggingface.co/teknium), [@bjoernp](https://huggingface.co/bjoernp) - Also [@bjoernp](https://huggingface.co/bjoernp) thank you for your contribution and LeoLM for OpenSchnabeltier. ## Evaluation and Benchmarks TBA