--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - automerger base_model: - liminerity/M7-7b - AurelPx/Percival_01-7b-slerp --- ## 🧩 Configuration ```yaml slices: - sources: - model: liminerity/M7-7b layer_range: [0, 32] - model: AurelPx/Percival_01-7b-slerp layer_range: [0, 32] merge_method: slerp base_model: liminerity/M7-7b parameters: t: - filter: self_attn value: [0.8006027834577485, 0.009328524130124638, 0.8621983214027452, 0.3145686958412437, 0.15715134219207227] - filter: mlp value: [0.1993972165422515, 0.9906714758698754, 0.13780167859725478, 0.6854313041587563, 0.8428486578079277] - value: 0.9507953064688142 dtype: bfloat16 random_seed: 0 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "aaron-di/Yamshadowexperiment28M70.8-0.01-0.86-0.31-0.16-0.95-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```