File size: 2,126 Bytes
2d892dd f322bda 2d892dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import requests
from typing import Dict, Any
from PIL import Image
import torch
import base64
from io import BytesIO
from transformers import BlipForConditionalGeneration, BlipProcessor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class EndpointHandler:
def __init__(self, path=""):
self.processor = BlipProcessor.from_pretrained(
"Salesforce/blip-image-captioning-large"
)
self.model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-large"
).to(device)
self.model.eval()
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
input_data = data.get("inputs", {})
encoded_images = input_data.get("images")
if not encoded_images:
return {"captions": [], "error": "No images provided"}
texts = input_data.get("texts", [""] * len(encoded_images))
try:
raw_images = [
Image.open(BytesIO(base64.b64decode(img))).convert("RGB")
for img in encoded_images
]
processed_inputs = [
self.processor(image, text, return_tensors="pt")
for image, text in zip(raw_images, texts)
]
processed_inputs = {
"pixel_values": torch.cat(
[inp["pixel_values"] for inp in processed_inputs], dim=0
).to(device),
"input_ids": torch.cat(
[inp["input_ids"] for inp in processed_inputs], dim=0
).to(device),
"attention_mask": torch.cat(
[inp["attention_mask"] for inp in processed_inputs], dim=0
).to(device),
}
with torch.no_grad():
out = self.model.generate(**processed_inputs)
captions = self.processor.batch_decode(out, skip_special_tokens=True)
return {"captions": captions}
except Exception as e:
print(f"Error during processing: {str(e)}")
return {"captions": [], "error": str(e)}
|