aayushgs's picture
slight changes
f322bda verified
raw
history blame
2.13 kB
import requests
from typing import Dict, Any
from PIL import Image
import torch
import base64
from io import BytesIO
from transformers import BlipForConditionalGeneration, BlipProcessor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class EndpointHandler:
def __init__(self, path=""):
self.processor = BlipProcessor.from_pretrained(
"Salesforce/blip-image-captioning-large"
)
self.model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-large"
).to(device)
self.model.eval()
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
input_data = data.get("inputs", {})
encoded_images = input_data.get("images")
if not encoded_images:
return {"captions": [], "error": "No images provided"}
texts = input_data.get("texts", [""] * len(encoded_images))
try:
raw_images = [
Image.open(BytesIO(base64.b64decode(img))).convert("RGB")
for img in encoded_images
]
processed_inputs = [
self.processor(image, text, return_tensors="pt")
for image, text in zip(raw_images, texts)
]
processed_inputs = {
"pixel_values": torch.cat(
[inp["pixel_values"] for inp in processed_inputs], dim=0
).to(device),
"input_ids": torch.cat(
[inp["input_ids"] for inp in processed_inputs], dim=0
).to(device),
"attention_mask": torch.cat(
[inp["attention_mask"] for inp in processed_inputs], dim=0
).to(device),
}
with torch.no_grad():
out = self.model.generate(**processed_inputs)
captions = self.processor.batch_decode(out, skip_special_tokens=True)
return {"captions": captions}
except Exception as e:
print(f"Error during processing: {str(e)}")
return {"captions": [], "error": str(e)}