import requests from typing import Dict, Any from PIL import Image import torch import base64 from io import BytesIO from transformers import BlipForConditionalGeneration, BlipProcessor device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class EndpointHandler: def __init__(self, path=""): self.processor = BlipProcessor.from_pretrained( "Salesforce/blip-image-captioning-large" ) self.model = BlipForConditionalGeneration.from_pretrained( "Salesforce/blip-image-captioning-large" ).to(device) self.model.eval() def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: input_data = data.get("inputs", {}) encoded_images = input_data.get("images") if not encoded_images: return {"captions": [], "error": "No images provided"} texts = input_data.get("texts", [""] * len(encoded_images)) try: raw_images = [ Image.open(BytesIO(base64.b64decode(img))).convert("RGB") for img in encoded_images ] processed_inputs = [ self.processor(image, text, return_tensors="pt") for image, text in zip(raw_images, texts) ] processed_inputs = { "pixel_values": torch.cat( [inp["pixel_values"] for inp in processed_inputs], dim=0 ).to(device), "input_ids": torch.cat( [inp["input_ids"] for inp in processed_inputs], dim=0 ).to(device), "attention_mask": torch.cat( [inp["attention_mask"] for inp in processed_inputs], dim=0 ).to(device), } with torch.no_grad(): out = self.model.generate(**processed_inputs) captions = self.processor.batch_decode(out, skip_special_tokens=True) return {"captions": captions} except Exception as e: print(f"Error during processing: {str(e)}") return {"captions": [], "error": str(e)}