Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
model-index:
|
3 |
+
- name: abacaj/mistral-7b-sft
|
4 |
+
results:
|
5 |
+
- task:
|
6 |
+
type: text-generation
|
7 |
+
dataset:
|
8 |
+
type: openai_humaneval
|
9 |
+
name: HumanEval
|
10 |
+
metrics:
|
11 |
+
- name: pass@1
|
12 |
+
type: pass@1
|
13 |
+
value: 54.27
|
14 |
+
verified: false
|
15 |
+
- task:
|
16 |
+
type: text-generation
|
17 |
+
dataset:
|
18 |
+
type: mbpp
|
19 |
+
name: MBPP
|
20 |
+
metrics:
|
21 |
+
- name: pass@1
|
22 |
+
type: pass@1
|
23 |
+
value: 38.00
|
24 |
+
verified: false
|
25 |
+
- task:
|
26 |
+
type: text-generation
|
27 |
+
dataset:
|
28 |
+
type: mmlu
|
29 |
+
name: MMLU
|
30 |
+
metrics:
|
31 |
+
- name: pass@1
|
32 |
+
type: pass@1
|
33 |
+
value: 45.89
|
34 |
+
verified: false
|
35 |
+
language:
|
36 |
+
- en
|
37 |
+
---
|
38 |
+
|
39 |
+
How to run inference:
|
40 |
+
```python
|
41 |
+
import transformers
|
42 |
+
import torch
|
43 |
+
|
44 |
+
|
45 |
+
def fmt_prompt(prompt: str) -> str:
|
46 |
+
return f"""[Instructions]:\n{prompt}\n\n[Response]:"""
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
model_name = "abacaj/mistral-7b-sft"
|
51 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
52 |
+
|
53 |
+
model = (
|
54 |
+
transformers.AutoModelForCausalLM.from_pretrained(
|
55 |
+
model_name,
|
56 |
+
)
|
57 |
+
.to("cuda:0")
|
58 |
+
.eval()
|
59 |
+
)
|
60 |
+
|
61 |
+
prompt = "If A is greater than B and B is greater than C. Is A greater than C?"
|
62 |
+
prompt_input = fmt_prompt(prompt)
|
63 |
+
inputs = tokenizer(prompt_input, return_tensors="pt").to(model.device)
|
64 |
+
input_ids_cutoff = inputs.input_ids.size(dim=1)
|
65 |
+
|
66 |
+
with torch.no_grad():
|
67 |
+
generated_ids = model.generate(
|
68 |
+
**inputs,
|
69 |
+
use_cache=True,
|
70 |
+
max_new_tokens=512,
|
71 |
+
temperature=0.2,
|
72 |
+
top_p=0.95,
|
73 |
+
do_sample=True,
|
74 |
+
eos_token_id=tokenizer.eos_token_id,
|
75 |
+
pad_token_id=tokenizer.pad_token_id,
|
76 |
+
)
|
77 |
+
|
78 |
+
completion = tokenizer.decode(
|
79 |
+
generated_ids[0][input_ids_cutoff:],
|
80 |
+
skip_special_tokens=True,
|
81 |
+
)
|
82 |
+
|
83 |
+
print(completion)
|
84 |
+
```
|
85 |
+
|
86 |
+
Evals:
|
87 |
+
|
88 |
+
|
89 |
+
Code to train model:
|
90 |
+
https://github.com/abacaj/train-with-fsdp
|