File size: 2,218 Bytes
8591464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4eeeb5
8591464
 
 
d2e317a
 
1f615d1
80edfbf
1802ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2e317a
b4eeeb5
d2e317a
 
0200589
 
 
d2e317a
e7f74c2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
datasets:
- theblackcat102/evol-codealpaca-v1
model-index:
- name: abacaj/starcoderbase-1b-sft
  results:
  - task:
      type: text-generation
    dataset:
      type: openai_humaneval
      name: HumanEval
    metrics:
    - name: pass@1
      type: pass@1
      value: 39
      verified: false
  - task:
      type: text-generation
    dataset:
      type: mbpp
      name: MBPP
    metrics:
    - name: pass@1
      type: pass@1
      value: 31.74
      verified: false
language:
- en
---

Dataset credits go to: [theblackcat102](https://huggingface.co/theblackcat102)

How to run inference:
```python
import transformers
import torch


def fmt_prompt(prompt: str) -> str:
    return f"""[Instructions]:\n{prompt}\n\n[Response]:"""


if __name__ == "__main__":
    model_name = "abacaj/starcoderbase-1b-sft"
    tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)

    model = (
        transformers.AutoModelForCausalLM.from_pretrained(
            model_name,
        )
        .to("cuda:0")
        .eval()
    )

    prompt = "Write a python function to sort the following array in ascending order, don't use any built in sorting methods: [9,2,8,1,5]"
    prompt_input = fmt_prompt(prompt)
    inputs = tokenizer(prompt_input, return_tensors="pt").to(model.device)
    input_ids_cutoff = inputs.input_ids.size(dim=1)

    with torch.no_grad():
        generated_ids = model.generate(
            **inputs,
            use_cache=True,
            max_new_tokens=512,
            temperature=0.2,
            top_p=0.95,
            do_sample=True,
            eos_token_id=tokenizer.eos_token_id,
            pad_token_id=tokenizer.pad_token_id,
        )

    completion = tokenizer.decode(
        generated_ids[0][input_ids_cutoff:],
        skip_special_tokens=True,
    )

    print(completion)
```

Evals:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62ceeb27e7f6014c0e9d9268/U7L1aOV7UxBEBcLGqOZ2s.png)

Training charts:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62ceeb27e7f6014c0e9d9268/PLkFqE7_34-hJmFW7_opG.png)

Link to charts:
https://api.wandb.ai/links/abacaj1/c4nkcs9r

Code to train model:
https://github.com/abacaj/train-with-fsdp