--- license: apache-2.0 base_model: openai/whisper-base.en tags: - generated_from_trainer metrics: - wer model-index: - name: abbenedekwhisper-base.en-finetuning3-D3K results: [] --- # abbenedekwhisper-base.en-finetuning3-D3K This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3880 - Cer: 68.1692 - Wer: 115.5629 - Ser: 100.0 - Cer Clean: 3.6171 - Wer Clean: 6.2914 - Ser Clean: 7.0175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-08 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | Ser | Cer Clean | Wer Clean | Ser Clean | |:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:|:-----:|:---------:|:---------:|:---------:| | 7.3491 | 1.06 | 200 | 6.1358 | 64.7746 | 122.5166 | 100.0 | 3.2832 | 5.6291 | 7.0175 | | 6.162 | 2.13 | 400 | 5.2935 | 64.2181 | 119.8675 | 100.0 | 3.7284 | 6.6225 | 7.8947 | | 5.3192 | 3.19 | 600 | 4.7534 | 64.6633 | 119.2053 | 100.0 | 3.5058 | 6.2914 | 7.0175 | | 4.7266 | 4.26 | 800 | 4.3761 | 65.1085 | 118.2119 | 100.0 | 3.2832 | 5.9603 | 6.1404 | | 4.2728 | 5.32 | 1000 | 4.0472 | 65.9432 | 117.2185 | 100.0 | 3.2276 | 5.9603 | 6.1404 | | 3.9248 | 6.38 | 1200 | 3.7904 | 66.7223 | 116.2252 | 100.0 | 3.2276 | 5.9603 | 6.1404 | | 3.6714 | 7.45 | 1400 | 3.6008 | 67.8909 | 117.2185 | 100.0 | 3.1720 | 5.9603 | 6.1404 | | 3.499 | 8.51 | 1600 | 3.4790 | 69.0595 | 118.2119 | 100.0 | 3.1720 | 5.9603 | 6.1404 | | 3.393 | 9.57 | 1800 | 3.4106 | 68.9482 | 117.5497 | 100.0 | 3.1720 | 5.9603 | 6.1404 | | 3.3491 | 10.64 | 2000 | 3.3880 | 68.1692 | 115.5629 | 100.0 | 3.6171 | 6.2914 | 7.0175 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.14.5 - Tokenizers 0.15.2