Phi-3.5-vision-instruct-gguf / convert_image_gguf.py
abetlen's picture
Update convert script
7daacef
raw
history blame
10.9 kB
import os
import typing
import argparse
import numpy as np
import torch
from gguf import *
from safetensors import safe_open
def k(raw_key: str, arch: str) -> str:
return raw_key.format(arch=arch)
class Args:
def __init__(self, model, output):
self.model = model
self.output = output
class SafetensorsIndexFile(typing.TypedDict):
weight_map: typing.Dict[str, str]
class SafetensorsIndex:
def __init__(self, index_file_path: str):
directory = os.path.dirname(index_file_path)
self.index = typing.cast(SafetensorsIndexFile, json.load(open(index_file_path)))
self.weight_map = self.index["weight_map"]
files = set(self.weight_map.values())
self.tensors = {file: safe_open(os.path.join(directory, file), framework="pt") for file in files}
def get_tensor(self, key: str) -> npt.NDArray[np.float32]:
# convert to float32 and cast to np array
return typing.cast(npt.NDArray[np.float32], self.tensors[self.weight_map[key]].get_tensor(key).to(torch.float32).numpy())
def main():
parser = argparse.ArgumentParser(description="Extract vision model from safetensors to GGUF")
parser.add_argument("--model", type=str, required=True, help="Input safetensors file")
parser.add_argument("--output", type=str, required=True, help="Output GGUF file")
args = parser.parse_args()
import pathlib
dir_model = pathlib.Path(args.model)
config = json.load(open(dir_model / "config.json"))
# tensors = safe_open(args.model, framework="np", device="cpu")
tensors = SafetensorsIndex((dir_model / "model.safetensors.index.json").as_posix())
ftype = 1 # fp16
# source https://github.com/huggingface/transformers/blob/87134662f73d5e89bb015531ddd1d4662371d317/src/transformers/models/clip/configuration_clip.py#L209
# hidden_size=768,
# intermediate_size=3072,
# projection_dim=512,
# num_hidden_layers=12,
# num_attention_heads=12,
# num_channels=3,
# image_size=224,
# patch_size=32,
# hidden_act="quick_gelu",
# layer_norm_eps=1e-5,
# attention_dropout=0.0,
# initializer_range=0.02,
# initializer_factor=1.0,
clip_vision_config = {
"hidden_size": 1024,
"intermediate_size": 4096,
"projection_dim": 1024,
"num_hidden_layers": 24,
"num_attention_heads": 16,
"num_channels": 3,
"image_size": 224,
"patch_size": 14,
"hidden_act": "quick_gelu",
"layer_norm_eps": 1e-5,
"attention_dropout": 0.0,
"initializer_range": 0.02,
"initializer_factor": 1.0,
}
# CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(
# attention_dropout=0.0,
# dropout=0.0,
# hidden_act="quick_gelu",
# hidden_size=1024,
# image_size=336,
# initializer_factor=1.0,
# initializer_range=0.02,
# intermediate_size=4096,
# layer_norm_eps=1e-05,
# num_attention_heads=16,
# num_channels=3,
# num_hidden_layers=24,
# patch_size=14,
# projection_dim=768
# )
clip_vision_config.update(dict(
attention_dropout=0.0,
dropout=0.0,
hidden_act="quick_gelu",
hidden_size=1024,
image_size=224,
initializer_factor=1.0,
initializer_range=0.02,
intermediate_size=4096,
layer_norm_eps=1e-05,
num_attention_heads=16,
num_channels=3,
num_hidden_layers=24,
patch_size=14,
projection_dim=1024
))
fout = GGUFWriter(args.output, arch="clip")
fout.add_bool("clip.has_text_encoder", False)
fout.add_bool("clip.has_vision_encoder", True)
fout.add_bool("clip.has_llava_projector", True)
fout.add_file_type(ftype)
model_name = "microsoft/phi-3.5-vision-instruct"
fout.add_name(model_name)
fout.add_description("image encoder for " + model_name)
fout.add_string("clip.projector_type", "mlp")
# Vision model hparams
VISION = "clip.vision"
fout.add_uint32("clip.vision.image_size", clip_vision_config["image_size"])
fout.add_uint32("clip.vision.patch_size", clip_vision_config["patch_size"])
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), clip_vision_config["hidden_size"])
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), clip_vision_config["intermediate_size"])
fout.add_uint32("clip.vision.projection_dim", clip_vision_config["projection_dim"])
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), clip_vision_config["num_attention_heads"])
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), clip_vision_config["layer_norm_eps"])
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), clip_vision_config["num_hidden_layers"])
fout.add_array("clip.vision.image_mean", [0.48145466, 0.4578275, 0.40821073])
fout.add_array("clip.vision.image_std", [0.26862954, 0.26130258, 0.27577711])
fout.add_bool("clip.use_gelu", clip_vision_config["hidden_act"] != "quick_gelu")
# Vision model tensors
prefix = "model.vision_embed_tokens.img_processor.vision_model."
fout.add_tensor(
"v.class_embd",
tensors.get_tensor(f"{prefix}embeddings.class_embedding").astype(np.float32),
)
fout.add_tensor(
"v.patch_embd.weight",
tensors.get_tensor(f"{prefix}embeddings.patch_embedding.weight")
.reshape(clip_vision_config["hidden_size"], 3, clip_vision_config["patch_size"], clip_vision_config["patch_size"])
.astype(np.float16),
)
fout.add_tensor(
"v.position_embd.weight",
tensors.get_tensor(f"{prefix}embeddings.position_embedding.weight").astype(np.float16),
)
fout.add_tensor(
"v.sub_gn",
tensors.get_tensor("model.vision_embed_tokens.sub_GN").astype(np.float32),
)
fout.add_tensor(
"v.glb_gn",
tensors.get_tensor("model.vision_embed_tokens.glb_GN").astype(np.float32),
)
fout.add_tensor(
"mm.0.weight",
tensors.get_tensor("model.vision_embed_tokens.img_projection.0.weight").astype(np.float16),
)
fout.add_tensor(
"mm.0.bias",
tensors.get_tensor("model.vision_embed_tokens.img_projection.0.bias").astype(np.float32),
)
fout.add_tensor(
"mm.2.weight",
tensors.get_tensor("model.vision_embed_tokens.img_projection.2.weight").astype(np.float16),
)
fout.add_tensor(
"mm.2.bias",
tensors.get_tensor("model.vision_embed_tokens.img_projection.2.bias").astype(np.float32),
)
for i in range(clip_vision_config["num_hidden_layers"]):
# attention norm
fout.add_tensor(
f"v.blk.{i}.attn_norm.weight",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.layer_norm1.weight").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{i}.attn_norm.bias",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.layer_norm1.bias").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{i}.ffn_norm.weight",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.layer_norm2.weight").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{i}.ffn_norm.bias",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.layer_norm2.bias").astype(np.float32),
)
# feed forward
fout.add_tensor(
f"v.blk.{i}.ffn_down.weight",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.mlp.fc1.weight").astype(np.float16),
)
fout.add_tensor(
f"v.blk.{i}.ffn_down.bias",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.mlp.fc1.bias").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{i}.ffn_up.weight",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.mlp.fc2.weight").astype(np.float16),
)
fout.add_tensor(
f"v.blk.{i}.ffn_up.bias",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.mlp.fc2.bias").astype(np.float32),
)
# attention
fout.add_tensor(
f"v.blk.{i}.attn_k.weight",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.self_attn.k_proj.weight").astype(np.float16),
)
fout.add_tensor(
f"v.blk.{i}.attn_k.bias",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.self_attn.k_proj.bias").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{i}.attn_out.weight",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.self_attn.out_proj.weight").astype(np.float16),
)
fout.add_tensor(
f"v.blk.{i}.attn_out.bias",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.self_attn.out_proj.bias").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{i}.attn_q.weight",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.self_attn.q_proj.weight").astype(np.float16),
)
fout.add_tensor(
f"v.blk.{i}.attn_q.bias",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.self_attn.q_proj.bias").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{i}.attn_v.weight",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.self_attn.v_proj.weight").astype(np.float16),
)
fout.add_tensor(
f"v.blk.{i}.attn_v.bias",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.self_attn.v_proj.bias").astype(np.float32),
)
# layer norm
fout.add_tensor(
f"v.blk.{i}.ln1.weight",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.layer_norm1.weight").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{i}.ln1.bias",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.layer_norm1.bias").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{i}.ln2.weight",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.layer_norm2.weight").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{i}.ln2.bias",
tensors.get_tensor(f"{prefix}encoder.layers.{i}.layer_norm2.bias").astype(np.float32),
)
fout.add_tensor(
"v.post_ln.weight",
tensors.get_tensor(f"{prefix}post_layernorm.weight").astype(np.float32),
)
fout.add_tensor(
"v.post_ln.bias",
tensors.get_tensor(f"{prefix}post_layernorm.bias").astype(np.float32),
)
fout.add_tensor(
"v.pre_ln.weight",
tensors.get_tensor(f"{prefix}pre_layrnorm.weight").astype(np.float32),
)
fout.add_tensor(
"v.pre_ln.bias",
tensors.get_tensor(f"{prefix}pre_layrnorm.bias").astype(np.float32),
)
fout.write_header_to_file()
fout.write_kv_data_to_file()
fout.write_tensors_to_file()
fout.close()
if __name__ == "__main__":
main()