End of training
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: ntu-spml/distilhubert
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: distilhubert-HuBERT_Distilled
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# distilhubert-HuBERT_Distilled
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.2017
|
22 |
+
- Accuracy: 0.8174
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 5e-05
|
42 |
+
- train_batch_size: 8
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- num_epochs: 10
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
+
| 1.4343 | 1.0 | 874 | 1.4833 | 0.5037 |
|
56 |
+
| 0.8613 | 2.0 | 1748 | 0.9254 | 0.7081 |
|
57 |
+
| 0.6081 | 3.0 | 2622 | 0.8306 | 0.7424 |
|
58 |
+
| 0.7287 | 4.0 | 3496 | 0.8770 | 0.7453 |
|
59 |
+
| 0.208 | 5.0 | 4370 | 0.8191 | 0.7831 |
|
60 |
+
| 0.1136 | 6.0 | 5244 | 0.9336 | 0.7894 |
|
61 |
+
| 0.094 | 7.0 | 6118 | 1.0803 | 0.7997 |
|
62 |
+
| 0.0007 | 8.0 | 6992 | 1.1537 | 0.8122 |
|
63 |
+
| 0.0649 | 9.0 | 7866 | 1.2157 | 0.8077 |
|
64 |
+
| 0.0003 | 10.0 | 8740 | 1.2017 | 0.8174 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.46.2
|
70 |
+
- Pytorch 2.5.1+cu121
|
71 |
+
- Datasets 3.1.0
|
72 |
+
- Tokenizers 0.20.3
|