abhi0710 commited on
Commit
2033501
1 Parent(s): 4eabfe5

End of training

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: ntu-spml/distilhubert
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: distilhubert-finetuned-gtzan
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # distilhubert-finetuned-gtzan
18
+
19
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.1809
22
+ - Accuracy: 0.8231
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 8
43
+ - eval_batch_size: 8
44
+ - seed: 42
45
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - num_epochs: 10
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 1.0783 | 1.0 | 874 | 1.1569 | 0.6234 |
56
+ | 0.4485 | 2.0 | 1748 | 0.8199 | 0.7499 |
57
+ | 0.3201 | 3.0 | 2622 | 0.7982 | 0.7705 |
58
+ | 0.3439 | 4.0 | 3496 | 0.8584 | 0.8025 |
59
+ | 0.2061 | 5.0 | 4370 | 0.9085 | 0.8065 |
60
+ | 0.0801 | 6.0 | 5244 | 0.9950 | 0.8134 |
61
+ | 0.0178 | 7.0 | 6118 | 1.0729 | 0.8168 |
62
+ | 0.0002 | 8.0 | 6992 | 1.1714 | 0.8180 |
63
+ | 0.0001 | 9.0 | 7866 | 1.1886 | 0.8226 |
64
+ | 0.0001 | 10.0 | 8740 | 1.1809 | 0.8231 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.46.2
70
+ - Pytorch 2.5.1+cu121
71
+ - Datasets 3.1.0
72
+ - Tokenizers 0.20.3