File size: 4,562 Bytes
3c9ea33
 
 
 
 
 
 
 
 
 
 
 
 
a3fd730
 
 
 
 
 
 
 
 
 
 
 
7d178c8
a3fd730
b27e448
 
a3fd730
 
 
db591f3
a3fd730
34d4acd
a3fd730
 
466e5c2
a3fd730
 
 
7928487
a3fd730
 
c0437be
a3fd730
1b396be
a3fd730
1b396be
a3fd730
 
 
 
 
5cefb80
 
 
 
067b8d6
a3fd730
 
 
 
 
 
 
 
1b396be
a3fd730
 
b27e448
a3fd730
 
 
a06dc37
a3fd730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
067b8d6
2e50631
a3fd730
 
 
 
 
 
 
 
 
 
 
 
 
 
b5dc008
a3fd730
 
 
 
3c9ea33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
license: cc-by-sa-3.0
tags:
- MosaicML
- AWQ
inference: false
---

# MPT-7B-Chat (4-bit 128g AWQ Quantized)
[MPT-7B-Chat](https://huggingface.co/mosaicml/mpt-7b-chat) is a chatbot-like model for dialogue generation. 

This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click [here](https://github.com/mit-han-lab/llm-awq).

## Model Date

July 5, 2023

## Model License

Please refer to original MPT model license ([link](https://huggingface.co/mosaicml/mpt-7b-chat)).

Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/blob/main/LICENSE)).

## CUDA Version

This model was successfully tested on CUDA driver v530.30.02 and runtime v11.7 with Python v3.10.11. Please note that AWQ requires NVIDIA GPUs with compute capability of `8.0` or higher.

For Docker users, the `nvcr.io/nvidia/pytorch:23.06-py3` image is runtime v12.1 but otherwise the same as the configuration above and has also been verified to work.

## How to Use

```bash
git clone https://github.com/mit-han-lab/llm-awq \
&& cd llm-awq \
&& git checkout f084f40bd996f3cf3a0633c1ad7d9d476c318aaa \
&& pip install -e . \
&& cd awq/kernels \
&& python setup.py install
```

```python
import time
import torch
from awq.quantize.quantizer import real_quantize_model_weight
from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer, TextStreamer
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
from huggingface_hub import snapshot_download

model_name = "abhinavkulkarni/mosaicml-mpt-7b-chat-w4-g128-awq"

# Config
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)

# Tokenizer
try:
    tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name, trust_remote_code=True)
except:
    tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, trust_remote_code=True)
streamer = TextStreamer(tokenizer, skip_special_tokens=True)

# Model
w_bit = 4
q_config = {
    "zero_point": True,
    "q_group_size": 128,
}

load_quant = snapshot_download(model_name)

with init_empty_weights():
    model = AutoModelForCausalLM.from_config(config=config, 
                                                 torch_dtype=torch.float16, trust_remote_code=True)

real_quantize_model_weight(model, w_bit=w_bit, q_config=q_config, init_only=True)
model.tie_weights()

model = load_checkpoint_and_dispatch(model, load_quant, device_map="balanced")

# Inference
prompt = f'''What is the difference between nuclear fusion and fission?
###Response:'''

input_ids = tokenizer(prompt, return_tensors='pt').input_ids.cuda()
output = model.generate(
    inputs=input_ids, 
    temperature=0.7,
    max_new_tokens=512,
    top_p=0.15,
    top_k=0,
    repetition_penalty=1.1,
    eos_token_id=tokenizer.eos_token_id,
    streamer=streamer)
```

## Evaluation

This evaluation was done using [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness).

[MPT-7B-Chat](https://huggingface.co/mosaicml/mpt-7b-chat)

|  Task  |Version|    Metric     | Value |   |Stderr|
|--------|------:|---------------|------:|---|------|
|wikitext|      1|word_perplexity|13.5936|   |      |
|        |       |byte_perplexity| 1.6291|   |      |
|        |       |bits_per_byte  | 0.7040|   |      |

[MPT-7B-Chat (4-bit 128-group AWQ)](https://huggingface.co/abhinavkulkarni/mosiacml-mpt-7b-chat-w4-g128-awq)

|  Task  |Version|    Metric     | Value |   |Stderr|
|--------|------:|---------------|------:|---|------|
|wikitext|      1|word_perplexity|14.0922|   |      |
|        |       |byte_perplexity| 1.6401|   |      |
|        |       |bits_per_byte  | 0.7138|   |      |

## Acknowledgements

The MPT model was originally finetuned by Sam Havens and the MosaicML NLP team. Please cite this model using the following format:

```
@online{MosaicML2023Introducing,
    author    = {MosaicML NLP Team},
    title     = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs},
    year      = {2023},
    url       = {www.mosaicml.com/blog/mpt-7b},
    note      = {Accessed: 2023-03-28}, % change this date
    urldate   = {2023-03-28} % change this date
}
```

The model was quantized with AWQ technique. If you find AWQ useful or relevant to your research, please kindly cite the paper:

```
@article{lin2023awq,
  title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
  author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
  journal={arXiv},
  year={2023}
}
```