File size: 5,092 Bytes
764c481 03282e4 764c481 50b7a21 764c481 22df56b 764c481 9e0ab8b 764c481 24fb001 c5f1497 764c481 8688d11 764c481 24fb001 764c481 efda64e 24fb001 4c60206 764c481 3b358d6 764c481 24fb001 764c481 24fb001 a6aa367 24fb001 764c481 24fb001 764c481 24fb001 4c60206 24fb001 764c481 e32470f 764c481 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
license: apache-2.0
tags:
- AWQ
inference: false
---
# Falcon-40b-Instruct (4-bit 128g AWQ Quantized)
[Falcon-40b-Instruct](https://huggingface.co/tiiuae/falcon-40b-instruct) is a 40B parameters causal decoder-only model built by [TII](https://www.tii.ae) based on [Falcon-40B](https://huggingface.co/tiiuae/falcon-7b) and finetuned on a mixture of chat/instruct datasets.
This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click [here](https://github.com/mit-han-lab/llm-awq).
## Model Date
July 5, 2023
## Model License
Please refer to original Falcon model license ([link](https://huggingface.co/tiiuae/falcon-40b-instruct)).
Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/blob/main/LICENSE)).
## CUDA Version
This model was successfully tested on CUDA driver v530.30.02 and runtime v11.7 with Python v3.10.11. Please note that AWQ requires NVIDIA GPUs with compute capability of `8.0` or higher.
## How to Use
```bash
git clone https://github.com/mit-han-lab/llm-awq \
&& cd llm-awq \
&& git checkout f084f40bd996f3cf3a0633c1ad7d9d476c318aaa \
&& pip install -e . \
&& cd awq/kernels \
&& python setup.py install
```
```python
import time
import torch
from awq.quantize.quantizer import real_quantize_model_weight
from awq.utils.utils import simple_dispatch_model
from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer, TextStreamer, TextStreamer
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
from huggingface_hub import snapshot_download
model_name = "abhinavkulkarni/tiiuae-falcon-40b-instruct-w4-g128-awq"
# Config
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
# Tokenizer
try:
tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name, trust_remote_code=True)
except:
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, trust_remote_code=True)
streamer = TextStreamer(tokenizer, skip_special_tokens=True)
streamer = TextStreamer(tokenizer, skip_special_tokens=True)
# Model
w_bit = 4
q_config = {
"zero_point": True,
"q_group_size": 128,
}
# Initialize empty model
with init_empty_weights():
model = AutoModelForCausalLM.from_config(config=config,
torch_dtype=torch.float16, trust_remote_code=True)
real_quantize_model_weight(model, w_bit=w_bit, q_config=q_config, init_only=True)
model.tie_weights()
model.tie_weights()
# Infer device_map
device_map = infer_auto_device_map(
model,
no_split_module_classes=[
"OPTDecoderLayer", "LlamaDecoderLayer", "BloomBlock", "MPTBlock", "DecoderLayer"]
)
# Load weights
load_checkpoint_in_model(
model,
checkpoint=snapshot_download(model_name),
device_map=device_map,
offload_state_dict=True,
)
model = simple_dispatch_model(model, device_map=device_map)
# Inference
prompt = f'''What is the difference between nuclear fusion and fission?
###Response:'''
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.cuda()
output = model.generate(
inputs=input_ids,
temperature=0.7,
max_new_tokens=512,
top_p=0.15,
top_k=0,
repetition_penalty=1.1,
eos_token_id=tokenizer.eos_token_id,
streamer=streamer,
streamer=streamer,
)
```
## Evaluation
This evaluation was done using [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness).
[Falcon-40b-Instruct](https://huggingface.co/tiiuae/falcon-40b-instruct)
| Task |Version| Metric |Value | |Stderr|
|--------|------:|---------------|-----:|---|------|
|wikitext| 1|word_perplexity|8.8219| | |
| | |byte_perplexity|1.5025| | |
| | |bits_per_byte |0.5874| | |
[Falcon-40b-Instruct (4-bit 128-group AWQ)](https://huggingface.co/abhinavkulkarni/tiiuae-falcon-40b-instruct-w4-g128-awq)
| Task |Version| Metric |Value | |Stderr|
|--------|------:|---------------|-----:|---|------|
|wikitext| 1|word_perplexity|8.9237| | |
| | |byte_perplexity|1.5058| | |
| | |bits_per_byte |0.5905| | |
## Acknowledgements
*Paper coming soon* 😊. In the meanwhile, you can use the following information to cite:
```
@article{falcon40b,
title={{Falcon-40B}: an open large language model with state-of-the-art performance},
author={Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme},
year={2023}
}
```
The model was quantized with AWQ technique. If you find AWQ useful or relevant to your research, please kindly cite the paper:
```
@article{lin2023awq,
title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
journal={arXiv},
year={2023}
}
```
|