File size: 4,436 Bytes
ad1feeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2ce496
ad1feeb
 
 
 
 
f2ce496
ad1feeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137bf22
ad1feeb
 
 
 
 
 
 
 
137bf22
ad1feeb
 
8f8f68c
ad1feeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137bf22
ad1feeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
license: apache-2.0
tags:
- AWQ
inference: false
---

# Falcon-7B-Instruct (4-bit 64g AWQ Quantized)
[Falcon-7B-Instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) is a 7B parameters causal decoder-only model built by [TII](https://www.tii.ae) based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and finetuned on a mixture of chat/instruct datasets.

This model is a 4-bit 64 group size AWQ quantized model. For more information about AWQ quantization, please click [here](https://github.com/mit-han-lab/llm-awq).

## Model Date

July 5, 2023

## Model License

Please refer to original Falcon model license ([link](https://huggingface.co/tiiuae/falcon-7b-instruct)).

Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/blob/main/LICENSE)).

## CUDA Version

This model was successfully tested on CUDA driver v530.30.02 and runtime v11.7 with Python v3.10.11. Please note that AWQ requires NVIDIA GPUs with compute capability of 80 or higher.

## How to Use

```bash
git clone https://github.com/mit-han-lab/llm-awq \
&& cd llm-awq \
&& git checkout 71d8e68df78de6c0c817b029a568c064bf22132d \
&& pip install -e . \
&& cd awq/kernels \
&& python setup.py install
```

```python
import torch
from awq.quantize.quantizer import real_quantize_model_weight
from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
from huggingface_hub import hf_hub_download

model_name = "tiiuae/falcon-7b-instruct"

# Config
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)

# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name)

# Model
w_bit = 4
q_config = {
    "zero_point": True,
    "q_group_size": 64,
}

load_quant = hf_hub_download('abhinavkulkarni/tiiuae-falcon-7b-instruct-w4-g64-awq', 'pytorch_model.bin')

with init_empty_weights():
    model = AutoModelForCausalLM.from_config(config=config, 
                                                 torch_dtype=torch.float16, trust_remote_code=True)

real_quantize_model_weight(model, w_bit=w_bit, q_config=q_config, init_only=True)

model = load_checkpoint_and_dispatch(model, load_quant, device_map="balanced")

# Inference
prompt = f'''What is the difference between nuclear fusion and fission?
###Response:'''

input_ids = tokenizer(prompt, return_tensors='pt').input_ids.cuda()
output = model.generate(
    inputs=input_ids, 
    temperature=0.7,
    max_new_tokens=512,
    top_p=0.15,
    top_k=0,
    repetition_penalty=1.1,
    eos_token_id=tokenizer.eos_token_id
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```

## Evaluation

This evaluation was done using [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness).

[Falcon-7B-Instruct](https://huggingface.co/tiiuae/falcon-7b-instruct)

|  Task  |Version|    Metric     | Value |   |Stderr|
|--------|------:|---------------|------:|---|------|
|wikitext|      1|word_perplexity|14.5069|   |      |
|        |       |byte_perplexity| 1.6490|   |      |
|        |       |bits_per_byte  | 0.7216|   |      |

[Falcon-7B-Instruct (4-bit 64-group AWQ)](https://huggingface.co/abhinavkulkarni/tiiuae-falcon-7b-instruct-w4-g64-awq)

|  Task  |Version|    Metric     | Value |   |Stderr|
|--------|------:|---------------|------:|---|------|
|wikitext|      1|word_perplexity|14.8667|   |      |
|        |       |byte_perplexity| 1.6566|   |      |
|        |       |bits_per_byte  | 0.7282|   |      |


## Acknowledgements

*Paper coming soon* 😊. In the meanwhile, you can use the following information to cite: 
```
@article{falcon40b,
  title={{Falcon-40B}: an open large language model with state-of-the-art performance},
  author={Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme},
  year={2023}
}
```


The model was quantized with AWQ technique. If you find AWQ useful or relevant to your research, please kindly cite the paper:

```
@article{lin2023awq,
  title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
  author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
  journal={arXiv},
  year={2023}
}
```