File size: 4,818 Bytes
cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de cc6348d 3d469de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
---
library_name: transformers
datasets:
- fka/awesome-chatgpt-prompts
base_model:
- unsloth/mistral-7b-instruct-v0.2-bnb-4bit
---
---
# Model Card for Mistral-7B Instruct v0.2 Finetuned Prompt Generator
This model is fine-tuned for generating contextually relevant prompts for various scenarios and domains, helping users craft detailed and effective prompt instructions.
## Model Details
### Model Description
This model is a fine-tuned version of [Mistral-7B-Instruct-v0.2-bnb-4bit] aimed at providing high-quality prompt generation across diverse topics.
It excels in understanding input instructions and generating structured prompt that fit various creative, professional, and instructional needs.
- **Developed by:** Abhinav Sarkar
- **Shared by:** abhinavsarkar
- **Model type:** Causal Language Model
- **Languages:** English
- **Finetuned from model:** Mistral-7B-Instruct-v0.2-bnb-4bit
## Uses
### Direct Use
This model is designed for generating context-specific prompts to assist with content creation, task descriptions, and crafting prompts for AI-based systems.
It can be utilized to streamline processes in areas such as software development, customer interaction, and creative writing.
### Downstream Use
This model can be incorporated into tools or systems where high-quality prompt generation is essential, such as:
- AI writing assistants
- Educational tools
- Chatbots requiring specialized responses or tailored prompts
## How to Get Started with the Model
Use the following peices of codes to start using the model:
- PreRequisites
```python
!pip install -U bitsandbytes
!pip install -U transformers
```
- Loading the model and its tokenizer
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained("abhinavsarkar/mistral-7b-instruct-v0.2-bb-4bit-finetuned-prompt-generator")
tokenizer = AutoTokenizer.from_pretrained("abhinavsarkar/mistral-7b-instruct-v0.2-bb-4bit-finetuned-prompt-generator")
```
- Inferencing the model
```python
prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
<|Instruction|>
{}
|<Input|>
{}
<|Response|>
{}
"""
input_text = "Your Input text"
inputs = tokenizer([
prompt.format(
"You are a prompt engineer. Your task is to craft a prompt based on the given input that ensures the model behaves exactly as described by the provided word.", # instruction
input_text, # input
"", # output - leave this blank for generation!
)
], return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
with torch.no_grad():
output = model.generate(**inputs, max_new_tokens=512)
response = tokenizer.decode(output[0], skip_special_tokens=True)
start_token = "<|Response|>"
end_token = "<|End|>"
start_idx = response.find(start_token) + len(start_token)
end_idx = response.find(end_token)
final_response = response[start_idx:end_idx].strip()
print(final_response)
```
### Possible Errors and Solutions
**Quantization Warnings**:
If you receive warnings about unused arguments or quantization settings, ensure you have `bitsandbytes` installed:
```python
!pip install -U bitsandbytes
```
**Tokenizer Issues**:
If you encounter tokenizer-related errors, update the `transformers` library:
```python
!pip install -U transformers
```
Restart the session after installing these packages.
## Training Details
### Training Data
The model was fine-tuned on [fka/awesome-chatgpt-prompts], a curated dataset focused on general-purpose prompt generation, ensuring broad applicability across a wide range of topics and tasks.
### Training Procedure
The model was fine-tuned using the Hugging Face Transformers library, Unsloth in a distributed environment(Google Collab, Kaggle), leveraging mixed-precision training for optimized performance.
#### Training Hyperparameters
- **Training regime:** fp16 mixed precision
- **Epochs:** 30
- **Batch size:** 2
- **Gradient accumulation steps:** 4
- **Learning rate:** 2e-4
## Technical Specifications
### Model Architecture and Objective
This model is based on Mistral-7B architecture, optimized for efficient inference using 4-bit quantization and fine-tuned for the task of causal language modeling.
### Compute Infrastructure
#### Hardware
The fine-tuning was conducted on a setup involving two T4 GPUs.
#### Software
- **Framework**: PyTorch
- **Libraries**: Hugging Face Transformers, Unsloth
## More Information
For further details or inquiries, please reach out via [LinkedIn](https://www.linkedin.com/in/abhinavsarkarrr/) or email at abhinavsarkar53@gmail.com.
## Model Card Authors
- Abhinav Sarkar
## Model Card Contact
- abhinavsarkar53@gmail.com
--- |