--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - mlabonne/AlphaMonarch-7B - Syed-Hasan-8503/Tess-Coder-7B-Mistral-v1.0 base_model: - mlabonne/AlphaMonarch-7B - Syed-Hasan-8503/Tess-Coder-7B-Mistral-v1.0 model-index: - name: MonarchCoder-MoE-2x7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.99 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/MonarchCoder-MoE-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.99 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/MonarchCoder-MoE-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.11 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/MonarchCoder-MoE-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 71.25 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/MonarchCoder-MoE-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.66 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/MonarchCoder-MoE-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/MonarchCoder-MoE-2x7B name: Open LLM Leaderboard --- # MonarchCoder-MoE-2x7B MonarchCoder-MoE-2x7B is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) * [Syed-Hasan-8503/Tess-Coder-7B-Mistral-v1.0](https://huggingface.co/Syed-Hasan-8503/Tess-Coder-7B-Mistral-v1.0) ## 🧩 Configuration ```yaml base_model: paulml/OGNO-7B gate_mode: hidden dtype: bfloat16 experts: - source_model: mlabonne/AlphaMonarch-7B positive_prompts: - "Mathematics" - "Logical Reasoning" - "Intelligent Conversations" - "Thoughtful Analysis" - "Biology" - "Medicine" - "Problem-solving Dialogue" - "Physics" - "Emotional intelligence" negative_prompts: - "History" - "Philosophy" - "Linguistics" - "Literature" - "Art and Art History" - "Music Theory and Composition" - "Performing Arts (Theater, Dance)" - source_model: Syed-Hasan-8503/Tess-Coder-7B-Mistral-v1.0 positive_prompts: - "Coding" - "Algorithm Design" - "Problem Solving" - "Software Development" - "Computer" - "Code Refactoring" - "Web development" - "Machine learning" negative_prompts: - "Education" - "Law" - "Theology and Religious Studies" - "Communication Studies" - "Business and Management" - "Agricultural Sciences" - "Nutrition and Food Science" - "Sports Science" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "abideen/MonarchCoder-MoE-2x7B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abideen__MonarchCoder-MoE-2x7B) | Metric |Value| |---------------------------------|----:| |Avg. |74.23| |AI2 Reasoning Challenge (25-Shot)|70.99| |HellaSwag (10-Shot) |87.99| |MMLU (5-Shot) |65.11| |TruthfulQA (0-shot) |71.25| |Winogrande (5-shot) |80.66| |GSM8k (5-shot) |69.37|