File size: 7,176 Bytes
4964ea6
fd73374
 
4964ea6
 
 
 
 
fd73374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4964ea6
 
 
 
2b42b9f
d6befc9
 
 
2b42b9f
12f194d
4964ea6
 
 
d6befc9
 
 
 
 
138a6fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4964ea6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dd1f34
 
4964ea6
 
 
 
 
 
 
 
bb82fd8
4964ea6
 
 
 
 
 
 
 
 
 
 
 
bb82fd8
 
 
 
 
fd73374
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
---
language:
- en
license: apache-2.0
tags:
- merge
- abideen/DareVox-7B
- udkai/Garrulus
model-index:
- name: NexoNimbus-7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 70.82
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/NexoNimbus-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 87.86
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/NexoNimbus-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.69
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/NexoNimbus-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 62.43
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/NexoNimbus-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 84.85
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/NexoNimbus-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 70.36
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/NexoNimbus-7B
      name: Open LLM Leaderboard
---

# NexoNimbus-7B



![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/9lIzCPqDYR6nnLgoH6kMp.png)


NexoNimbus-7B is a merge of the following models:
* [abideen/DareVox-7B](https://huggingface.co/abideen/DareVox-7B)
* [udkai/Garrulus](https://huggingface.co/udkai/Garrulus)

🏆 Evaluation
NexoNimbus-7B is the 5th best-performing 7B LLM on the Open LLM Leaderboard:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/MIkOaXVGJ0T5UVYIEhtYA.png)


|    Task     |Version| Metric |Value|   |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge|      0|acc     |68.25|±  |  1.36|
|             |       |acc_norm|70.81|±  |  1.38|
|hellaswag    |      0|acc     |70.86|±  |  0.45|
|             |       |acc_norm|87.86|±  |  0.32|
|gsm8k        |      0|acc     |70.35|±  |  1.25|
|winogrande   |      0|acc     |84.84|±  |  1.00|
|mmlu         |      0|acc     |64.69|±  |  1.00|

Average: 73.5%

### TruthfulQA
|    Task     |Version|Metric|Value|   |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc|      1|mc1   |46.26|±  |  1.74|
|             |       |mc2   |62.42|±  |  1.54|


## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: abideen/DareVox-7B 
        layer_range: [0, 32]
      - model: udkai/Garrulus
        layer_range: [0, 32]
merge_method: slerp
base_model: abideen/DareVox-7B 
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

```

## 💻 Usage

Here's a [Colab notebook](https://colab.research.google.com/drive/1F9lzL1IeZRMgiSbY9UbgCR__RreIflJh?usp=sharing) to run NexoNimbus-7B in 4-bit precision on a free T4 GPU.

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "abideen/NexoNimbus-7B"
messages = [{"role": "user", "content": "Explain what is Machine learning."}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

"Machine learning is a subfield of artificial intelligence that focuses on developing algorithms and models that allow computers to learn and improve their performance over time, without being explicitly programmed. It involves the use of statistical techniques and data analysis to identify patterns and make predictions based on input data.
In machine learning, data is fed into a model, which then adjusts its internal parameters to minimize the difference between the predicted output and the actual output. This process is called training, and as the model is exposed to more data, it becomes better at making predictions or classifications.
Machine learning can be divided into several categories, including supervised learning, unsupervised learning, and reinforcement learning. Supervised learning involves using labeled data, where the desired output is known, and the model learns to map inputs to outputs. Unsupervised learning, on the other hand, does not have a predefined output, and the model learns to identify patterns or relationships within the data. Reinforcement learning involves learning through trial and error, with the model receiving feedback in the form of rewards or penalties based on its actions.
Some common applications of machine learning include image recognition, natural language processing, recommendation systems, fraud detection, and self-driving."
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abideen__NexoNimbus-7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |73.50|
|AI2 Reasoning Challenge (25-Shot)|70.82|
|HellaSwag (10-Shot)              |87.86|
|MMLU (5-Shot)                    |64.69|
|TruthfulQA (0-shot)              |62.43|
|Winogrande (5-shot)              |84.85|
|GSM8k (5-shot)                   |70.36|