--- license: cc-by-nc-4.0 base_model: google/gemma-7b-it tags: - generated_from_trainer - axolotl - gemma - instruct - finetune - chatml - gpt4 - synthetic data - distillation model-index: - name: gemma-7b-openhermes results: [] datasets: - mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha language: - en library_name: transformers pipeline_tag: text-generation --- # gemma-7b-openhermes ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/mh-NUO_aNbQpD_NAuFv7g.jpeg) gemma-7b-openhermes is a variant of the Gemma 7B language model, which has been further fine-tuned on the OpenHermes-2.5 preference dataset using QLoRA. * [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) * [mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha)
## Usage ### Chat Template The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet. Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction: ```py from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model_id = "abideen/gemma-7b-openhermes" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=dtype, ) chat = [{ "role": "user", "content": "What is a Language Model?" }] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) ``` After the prompt is ready, generation can be performed like this: ```py inputs = tokenizer.encode(prompt, add_special_tokens=True, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=250) print(tokenizer.decode(outputs[0])) ``` ### Inputs and outputs * **Input:** Text string, such as a question, a prompt, or a document to be summarized. * **Output:** Generated English-language text in response to the input, such as an answer to a question, or a summary of a document. ## Evaluation data 🏆 Evals coming soon. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### 📝 Axolotl Configuration ```yaml base_model: google/gemma-7b-it model_type: GemmaForCausalLM tokenizer_type: GemmaTokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false rl: dpo chat_template: chatml datasets: - path: mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha split: train type: chatml.intel dataset_prepared_path: val_set_size: 0.01 output_dir: ./out adapter: qlora lora_model_dir: sequence_len: 1800 sample_packing: false pad_to_sequence_len: false lora_r: 16 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: wandb_project: gemma wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 1 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 5e-7 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: false warmup_steps: 100 evals_per_epoch: 1 eval_table_size: eval_table_max_new_tokens: 128 save_steps: 1000 max_steps: 1000 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ``` ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.17.0 - Tokenizers 0.15.0 - axolotl: 0.4.0 [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)