Daniel Rasmussen
commited on
Commit
·
ea8b1b4
1
Parent(s):
ee0736e
Add AutoFeatureExtractor support
Browse files- config.json +2 -1
- feature_extraction.py +378 -0
- preprocessor_config.json +14 -0
- speech_features.py +0 -125
config.json
CHANGED
|
@@ -6,7 +6,8 @@
|
|
| 6 |
"auto_map": {
|
| 7 |
"AutoConfig": "config.Config",
|
| 8 |
"AutoModel": "model.Model",
|
| 9 |
-
"AutoModelForCTC": "model.Model"
|
|
|
|
| 10 |
},
|
| 11 |
"input_features": 80,
|
| 12 |
"vocab_size": 256,
|
|
|
|
| 6 |
"auto_map": {
|
| 7 |
"AutoConfig": "config.Config",
|
| 8 |
"AutoModel": "model.Model",
|
| 9 |
+
"AutoModelForCTC": "model.Model",
|
| 10 |
+
"AutoFeatureExtractor": "feature_extraction.FeatureExtractor"
|
| 11 |
},
|
| 12 |
"input_features": 80,
|
| 13 |
"vocab_size": 256,
|
feature_extraction.py
ADDED
|
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Feature extraction for ASR model."""
|
| 2 |
+
|
| 3 |
+
from typing import List, Optional, Union
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import SequenceFeatureExtractor
|
| 8 |
+
from transformers.audio_utils import mel_filter_bank
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class FeatureExtractor(SequenceFeatureExtractor):
|
| 12 |
+
"""Feature extractor for ASR model that extracts MFCC features from audio.
|
| 13 |
+
|
| 14 |
+
Parameters
|
| 15 |
+
----------
|
| 16 |
+
window_size_ms : int
|
| 17 |
+
Window size in milliseconds for STFT, default 25.
|
| 18 |
+
window_stride_ms : int
|
| 19 |
+
Window stride in milliseconds for STFT, default 10.
|
| 20 |
+
mel_lower_edge_hertz : int
|
| 21 |
+
Lower edge of mel frequency range, default 0.
|
| 22 |
+
mel_upper_edge_hertz : int
|
| 23 |
+
Upper edge of mel frequency range, default 8000.
|
| 24 |
+
mel_num_bins : int
|
| 25 |
+
Number of mel filterbank features, default 80.
|
| 26 |
+
sample_rate : int
|
| 27 |
+
Sample rate of audio input, default 16000.
|
| 28 |
+
padding_value : float
|
| 29 |
+
Value to use for padding variable-length inputs, default 1000.
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
model_input_names = ["input_features"]
|
| 33 |
+
|
| 34 |
+
def __init__(
|
| 35 |
+
self,
|
| 36 |
+
window_size_ms: int = 25,
|
| 37 |
+
window_stride_ms: int = 10,
|
| 38 |
+
mel_lower_edge_hertz: int = 0,
|
| 39 |
+
mel_upper_edge_hertz: int = 8000,
|
| 40 |
+
mel_num_bins: int = 80,
|
| 41 |
+
sample_rate: int = 16000,
|
| 42 |
+
padding_value: float = 1000.0,
|
| 43 |
+
**kwargs,
|
| 44 |
+
):
|
| 45 |
+
super().__init__(
|
| 46 |
+
feature_size=mel_num_bins,
|
| 47 |
+
sampling_rate=sample_rate,
|
| 48 |
+
padding_value=padding_value,
|
| 49 |
+
**kwargs,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
self.window_size_ms = window_size_ms
|
| 53 |
+
self.window_stride_ms = window_stride_ms
|
| 54 |
+
self.mel_lower_edge_hertz = mel_lower_edge_hertz
|
| 55 |
+
self.mel_upper_edge_hertz = mel_upper_edge_hertz
|
| 56 |
+
self.mel_num_bins = mel_num_bins
|
| 57 |
+
self.log_epsilon = 1e-12
|
| 58 |
+
|
| 59 |
+
# Calculate window parameters
|
| 60 |
+
self.window_size_samples = int(
|
| 61 |
+
round(self.sampling_rate * self.window_size_ms / 1000.0)
|
| 62 |
+
)
|
| 63 |
+
self.window_stride_samples = int(
|
| 64 |
+
round(self.sampling_rate * self.window_stride_ms / 1000.0)
|
| 65 |
+
)
|
| 66 |
+
self.fft_len = self.window_size_samples
|
| 67 |
+
|
| 68 |
+
# Precompute mel filterbank matrix
|
| 69 |
+
self.mel_matrix = mel_filter_bank(
|
| 70 |
+
num_frequency_bins=self.fft_len // 2 + 1,
|
| 71 |
+
num_mel_filters=self.mel_num_bins,
|
| 72 |
+
min_frequency=self.mel_lower_edge_hertz,
|
| 73 |
+
max_frequency=self.mel_upper_edge_hertz,
|
| 74 |
+
sampling_rate=self.sampling_rate,
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# Cache for device-specific mel matrix (avoids repeated conversions)
|
| 78 |
+
self._mel_matrix_cache = {} # device -> torch.Tensor
|
| 79 |
+
|
| 80 |
+
# Default device for feature extraction
|
| 81 |
+
self._device = torch.device("cpu")
|
| 82 |
+
|
| 83 |
+
@property
|
| 84 |
+
def device(self):
|
| 85 |
+
"""Get the device for feature extraction."""
|
| 86 |
+
return self._device
|
| 87 |
+
|
| 88 |
+
def to(self, device):
|
| 89 |
+
"""Move feature extractor to a device.
|
| 90 |
+
|
| 91 |
+
Parameters
|
| 92 |
+
----------
|
| 93 |
+
device : torch.device or str
|
| 94 |
+
Device to move to (e.g., 'cuda', 'cpu', torch.device('cuda:0'))
|
| 95 |
+
|
| 96 |
+
Returns
|
| 97 |
+
-------
|
| 98 |
+
self
|
| 99 |
+
"""
|
| 100 |
+
self._device = torch.device(device)
|
| 101 |
+
return self
|
| 102 |
+
|
| 103 |
+
def cuda(self, device=None):
|
| 104 |
+
"""Move feature extractor to CUDA device.
|
| 105 |
+
|
| 106 |
+
Parameters
|
| 107 |
+
----------
|
| 108 |
+
device : int, optional
|
| 109 |
+
CUDA device index. If None, uses default CUDA device.
|
| 110 |
+
|
| 111 |
+
Returns
|
| 112 |
+
-------
|
| 113 |
+
self
|
| 114 |
+
"""
|
| 115 |
+
if device is None:
|
| 116 |
+
self._device = torch.device("cuda")
|
| 117 |
+
else:
|
| 118 |
+
self._device = torch.device(f"cuda:{device}")
|
| 119 |
+
return self
|
| 120 |
+
|
| 121 |
+
def cpu(self):
|
| 122 |
+
"""Move feature extractor to CPU.
|
| 123 |
+
|
| 124 |
+
Returns
|
| 125 |
+
-------
|
| 126 |
+
self
|
| 127 |
+
"""
|
| 128 |
+
self._device = torch.device("cpu")
|
| 129 |
+
return self
|
| 130 |
+
|
| 131 |
+
def to_dict(self):
|
| 132 |
+
"""Serialize to dict, excluding non-serializable attributes."""
|
| 133 |
+
output = super().to_dict()
|
| 134 |
+
# Remove non-serializable attributes
|
| 135 |
+
output.pop("_device", None)
|
| 136 |
+
output.pop("_mel_matrix_cache", None)
|
| 137 |
+
return output
|
| 138 |
+
|
| 139 |
+
def __call__(
|
| 140 |
+
self,
|
| 141 |
+
raw_speech: Union[
|
| 142 |
+
np.ndarray,
|
| 143 |
+
torch.Tensor,
|
| 144 |
+
List[float],
|
| 145 |
+
List[np.ndarray],
|
| 146 |
+
List[torch.Tensor],
|
| 147 |
+
List[List[float]],
|
| 148 |
+
],
|
| 149 |
+
sampling_rate: Optional[int] = None,
|
| 150 |
+
mask: Optional[Union[np.ndarray, torch.Tensor]] = None,
|
| 151 |
+
**kwargs,
|
| 152 |
+
):
|
| 153 |
+
"""Extract MFCC features from raw audio.
|
| 154 |
+
|
| 155 |
+
Parameters
|
| 156 |
+
----------
|
| 157 |
+
raw_speech : np.ndarray or torch.Tensor or List[float] or List[np.ndarray] or List[torch.Tensor] or List[List[float]]
|
| 158 |
+
The raw audio waveform(s) to extract features from. Can be:
|
| 159 |
+
- A single waveform as a 1D array/tensor
|
| 160 |
+
- A batch of waveforms as a 2D array/tensor
|
| 161 |
+
- A list of waveforms (can be variable length, mask auto-generated)
|
| 162 |
+
sampling_rate : int, optional
|
| 163 |
+
Sampling rate of the audio. If provided, must match the feature
|
| 164 |
+
extractor's sampling_rate.
|
| 165 |
+
mask : np.ndarray or torch.Tensor, optional
|
| 166 |
+
Mask for the input audio when input is array/tensor. Should have the same
|
| 167 |
+
shape as raw_speech. Values should be 1 for real audio and 0 for padding.
|
| 168 |
+
Not used when raw_speech is a list (mask is auto-generated in that case).
|
| 169 |
+
|
| 170 |
+
Returns
|
| 171 |
+
-------
|
| 172 |
+
torch.Tensor or dict
|
| 173 |
+
If no output mask is needed, returns the features tensor directly with
|
| 174 |
+
shape (batch, time, features). If an output mask is computed, returns a
|
| 175 |
+
dictionary containing:
|
| 176 |
+
- input_features: Extracted MFCC features of shape (batch, time, features)
|
| 177 |
+
- mask: Mask for the features of shape (batch, time)
|
| 178 |
+
"""
|
| 179 |
+
|
| 180 |
+
# Validate sampling rate
|
| 181 |
+
if sampling_rate is not None and sampling_rate != self.sampling_rate:
|
| 182 |
+
raise ValueError(
|
| 183 |
+
f"The sampling_rate of the provided audio ({sampling_rate}) "
|
| 184 |
+
f"doesn't match the feature extractor's sampling_rate ({self.sampling_rate})"
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
input_mask = None
|
| 188 |
+
|
| 189 |
+
# Handle tensor/array inputs directly (no padding needed)
|
| 190 |
+
if isinstance(raw_speech, (torch.Tensor, np.ndarray)):
|
| 191 |
+
# Ensure input is 2D
|
| 192 |
+
if raw_speech.ndim == 1:
|
| 193 |
+
raw_speech = (
|
| 194 |
+
raw_speech[np.newaxis, :]
|
| 195 |
+
if isinstance(raw_speech, np.ndarray)
|
| 196 |
+
else raw_speech.unsqueeze(0)
|
| 197 |
+
)
|
| 198 |
+
if mask is not None:
|
| 199 |
+
mask = (
|
| 200 |
+
mask[np.newaxis, :]
|
| 201 |
+
if isinstance(mask, np.ndarray)
|
| 202 |
+
else mask.unsqueeze(0)
|
| 203 |
+
)
|
| 204 |
+
elif raw_speech.ndim != 2:
|
| 205 |
+
raise ValueError(f"Input must be 1D or 2D, got {raw_speech.ndim}D")
|
| 206 |
+
|
| 207 |
+
# Convert to torch
|
| 208 |
+
batched_speech = (
|
| 209 |
+
raw_speech
|
| 210 |
+
if isinstance(raw_speech, torch.Tensor)
|
| 211 |
+
else torch.from_numpy(raw_speech)
|
| 212 |
+
)
|
| 213 |
+
# Move to device
|
| 214 |
+
batched_speech = batched_speech.to(self._device)
|
| 215 |
+
|
| 216 |
+
if mask is not None:
|
| 217 |
+
input_mask = (
|
| 218 |
+
mask if isinstance(mask, torch.Tensor) else torch.from_numpy(mask)
|
| 219 |
+
)
|
| 220 |
+
# Move to device
|
| 221 |
+
input_mask = input_mask.to(self._device)
|
| 222 |
+
else:
|
| 223 |
+
# Handle list inputs (may need padding)
|
| 224 |
+
if not isinstance(raw_speech, list):
|
| 225 |
+
raw_speech = [raw_speech]
|
| 226 |
+
|
| 227 |
+
# Convert to torch tensors and move to device
|
| 228 |
+
torch_speech = []
|
| 229 |
+
for speech in raw_speech:
|
| 230 |
+
if isinstance(speech, torch.Tensor):
|
| 231 |
+
torch_speech.append(speech.float().to(self._device))
|
| 232 |
+
else:
|
| 233 |
+
torch_speech.append(
|
| 234 |
+
torch.from_numpy(np.asarray(speech, dtype=np.float32)).to(
|
| 235 |
+
self._device
|
| 236 |
+
)
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
# Find max length and pad to it
|
| 240 |
+
max_length = max(len(speech) for speech in torch_speech)
|
| 241 |
+
|
| 242 |
+
# Pad all sequences to max_length and create mask
|
| 243 |
+
padded_speech = []
|
| 244 |
+
masks = []
|
| 245 |
+
for speech in torch_speech:
|
| 246 |
+
original_length = len(speech)
|
| 247 |
+
if original_length < max_length:
|
| 248 |
+
padding = torch.full(
|
| 249 |
+
(max_length - original_length,),
|
| 250 |
+
self.padding_value,
|
| 251 |
+
dtype=speech.dtype,
|
| 252 |
+
device=self._device,
|
| 253 |
+
)
|
| 254 |
+
speech = torch.cat([speech, padding])
|
| 255 |
+
|
| 256 |
+
# Create mask: 1 for real data, 0 for padding
|
| 257 |
+
mask = torch.ones(max_length, dtype=torch.bool, device=self._device)
|
| 258 |
+
mask[original_length:] = 0
|
| 259 |
+
else:
|
| 260 |
+
mask = torch.ones(max_length, dtype=torch.bool, device=self._device)
|
| 261 |
+
|
| 262 |
+
padded_speech.append(speech)
|
| 263 |
+
masks.append(mask)
|
| 264 |
+
|
| 265 |
+
# Stack into batch
|
| 266 |
+
batched_speech = torch.stack(padded_speech, dim=0)
|
| 267 |
+
input_mask = torch.stack(masks, dim=0)
|
| 268 |
+
|
| 269 |
+
# Extract features
|
| 270 |
+
with torch.no_grad():
|
| 271 |
+
features = self._extract_features(batched_speech)
|
| 272 |
+
|
| 273 |
+
# Compute output mask if we have an input mask
|
| 274 |
+
output_mask = None
|
| 275 |
+
if input_mask is not None:
|
| 276 |
+
output_mask = self._compute_mask(input_mask)
|
| 277 |
+
# Set masked features to padding_value
|
| 278 |
+
# output_mask is (batch, time), features is (batch, time, features)
|
| 279 |
+
# Need to expand mask to broadcast: (batch, time, 1)
|
| 280 |
+
mask_expanded = output_mask.unsqueeze(-1)
|
| 281 |
+
features = torch.where(
|
| 282 |
+
mask_expanded,
|
| 283 |
+
features,
|
| 284 |
+
torch.tensor(
|
| 285 |
+
self.padding_value, dtype=features.dtype, device=features.device
|
| 286 |
+
),
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
# Return features directly if no mask, otherwise return dict
|
| 290 |
+
if output_mask is not None:
|
| 291 |
+
return {
|
| 292 |
+
"input_features": features,
|
| 293 |
+
"mask": output_mask,
|
| 294 |
+
}
|
| 295 |
+
else:
|
| 296 |
+
return features
|
| 297 |
+
|
| 298 |
+
def _extract_features(self, waveform: torch.Tensor) -> torch.Tensor:
|
| 299 |
+
"""Extract MFCC features from waveform.
|
| 300 |
+
|
| 301 |
+
Parameters
|
| 302 |
+
----------
|
| 303 |
+
waveform : torch.Tensor
|
| 304 |
+
Input waveform of shape (batch, time)
|
| 305 |
+
|
| 306 |
+
Returns
|
| 307 |
+
-------
|
| 308 |
+
torch.Tensor
|
| 309 |
+
Log mel spectrogram features of shape (batch, time_frames, mel_bins)
|
| 310 |
+
"""
|
| 311 |
+
# Zero pad if there isn't enough data for at least one frame
|
| 312 |
+
if waveform.shape[1] < self.window_size_samples:
|
| 313 |
+
padding = self.window_size_samples - waveform.shape[1]
|
| 314 |
+
waveform = torch.nn.functional.pad(waveform, (0, padding))
|
| 315 |
+
|
| 316 |
+
# Compute spectrogram using STFT
|
| 317 |
+
spectrogram = torch.stft(
|
| 318 |
+
waveform,
|
| 319 |
+
n_fft=self.fft_len,
|
| 320 |
+
hop_length=self.window_stride_samples,
|
| 321 |
+
win_length=self.window_size_samples,
|
| 322 |
+
window=torch.hann_window(self.window_size_samples, device=waveform.device),
|
| 323 |
+
center=False,
|
| 324 |
+
return_complex=True,
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
# Take absolute value to get magnitude
|
| 328 |
+
spectrogram = torch.abs(spectrogram)
|
| 329 |
+
|
| 330 |
+
# Get mel matrix from cache or create it
|
| 331 |
+
device = spectrogram.device
|
| 332 |
+
dtype = spectrogram.dtype
|
| 333 |
+
cache_key = (device, dtype)
|
| 334 |
+
|
| 335 |
+
if cache_key not in self._mel_matrix_cache:
|
| 336 |
+
# Convert and cache the mel matrix for this device/dtype combination
|
| 337 |
+
self._mel_matrix_cache[cache_key] = torch.from_numpy(self.mel_matrix).to(
|
| 338 |
+
device=device, dtype=dtype
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
mel_matrix = self._mel_matrix_cache[cache_key]
|
| 342 |
+
|
| 343 |
+
# Apply mel filterbank: (batch, freq, time) @ (freq, mel) -> (batch, time, mel)
|
| 344 |
+
# Need to transpose spectrogram from (batch, freq, time) to (batch, time, freq)
|
| 345 |
+
spectrogram = spectrogram.transpose(1, 2)
|
| 346 |
+
mel_spectrogram = torch.matmul(spectrogram, mel_matrix)
|
| 347 |
+
|
| 348 |
+
# Compute log (with epsilon for stability)
|
| 349 |
+
log_mel_spectrogram = torch.log(
|
| 350 |
+
torch.clamp(mel_spectrogram, min=self.log_epsilon)
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
return log_mel_spectrogram
|
| 354 |
+
|
| 355 |
+
def _compute_mask(self, input_mask: torch.Tensor) -> torch.Tensor:
|
| 356 |
+
"""Compute output mask for features based on input mask.
|
| 357 |
+
|
| 358 |
+
Parameters
|
| 359 |
+
----------
|
| 360 |
+
input_mask : torch.Tensor
|
| 361 |
+
Input mask of shape (batch, time) with 1 for real data, 0 for padding
|
| 362 |
+
|
| 363 |
+
Returns
|
| 364 |
+
-------
|
| 365 |
+
torch.Tensor
|
| 366 |
+
Output mask of shape (batch, time_frames) where a frame is True only if
|
| 367 |
+
all samples in that frame were valid (not padded)
|
| 368 |
+
"""
|
| 369 |
+
# Split mask into frames using unfold
|
| 370 |
+
# unfold(dimension, size, step)
|
| 371 |
+
mask_frames = input_mask.unfold(
|
| 372 |
+
1, self.window_size_samples, self.window_stride_samples
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
# A frame is valid only if ALL samples in that frame are valid
|
| 376 |
+
output_mask = torch.all(mask_frames, dim=-1)
|
| 377 |
+
|
| 378 |
+
return output_mask
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"feature_extractor_type": "FeatureExtractor",
|
| 3 |
+
"processor_class": "FeatureExtractor",
|
| 4 |
+
"auto_map": {
|
| 5 |
+
"AutoFeatureExtractor": "feature_extraction.FeatureExtractor"
|
| 6 |
+
},
|
| 7 |
+
"window_size_ms": 25,
|
| 8 |
+
"window_stride_ms": 10,
|
| 9 |
+
"mel_lower_edge_hertz": 0,
|
| 10 |
+
"mel_upper_edge_hertz": 8000,
|
| 11 |
+
"mel_num_bins": 80,
|
| 12 |
+
"sample_rate": 16000,
|
| 13 |
+
"padding_value": 1000.0
|
| 14 |
+
}
|
speech_features.py
DELETED
|
@@ -1,125 +0,0 @@
|
|
| 1 |
-
"""A layer for extracting features from speech data."""
|
| 2 |
-
|
| 3 |
-
from typing import Iterable, Optional
|
| 4 |
-
|
| 5 |
-
import keras
|
| 6 |
-
import torch
|
| 7 |
-
from keras import ops
|
| 8 |
-
from numpy.typing import NDArray
|
| 9 |
-
from transformers.audio_utils import mel_filter_bank
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
class SpeechFeatures(keras.layers.Layer):
|
| 13 |
-
"""
|
| 14 |
-
Computes MFCC features from audio signals.
|
| 15 |
-
"""
|
| 16 |
-
|
| 17 |
-
def __init__(
|
| 18 |
-
self,
|
| 19 |
-
window_size_ms=25,
|
| 20 |
-
window_stride_ms=10,
|
| 21 |
-
mel_lower_edge_hertz=0,
|
| 22 |
-
mel_upper_edge_hertz=8000,
|
| 23 |
-
mel_num_bins=80,
|
| 24 |
-
sample_rate=16000,
|
| 25 |
-
):
|
| 26 |
-
super().__init__()
|
| 27 |
-
|
| 28 |
-
self.window_size_ms = window_size_ms
|
| 29 |
-
self.window_stride_ms = window_stride_ms
|
| 30 |
-
self.mel_lower_edge_hertz = mel_lower_edge_hertz
|
| 31 |
-
self.mel_upper_edge_hertz = mel_upper_edge_hertz
|
| 32 |
-
self.mel_num_bins = mel_num_bins
|
| 33 |
-
self.sample_rate = sample_rate
|
| 34 |
-
self.log_epsilon = 1e-12
|
| 35 |
-
|
| 36 |
-
self.window_size_samples = int(
|
| 37 |
-
round(self.sample_rate * self.window_size_ms / 1000.0)
|
| 38 |
-
)
|
| 39 |
-
self.window_stride_samples = int(
|
| 40 |
-
round(self.sample_rate * self.window_stride_ms / 1000.0)
|
| 41 |
-
)
|
| 42 |
-
|
| 43 |
-
self.supports_masking = True
|
| 44 |
-
self.fft_len = self.window_size_samples
|
| 45 |
-
|
| 46 |
-
def build(self, input_shape: Iterable[int]) -> None:
|
| 47 |
-
# precompute the mel matrix
|
| 48 |
-
self.mel_matrix = mel_filter_bank(
|
| 49 |
-
num_frequency_bins=self.fft_len // 2 + 1,
|
| 50 |
-
num_mel_filters=self.mel_num_bins,
|
| 51 |
-
min_frequency=self.mel_lower_edge_hertz,
|
| 52 |
-
max_frequency=self.mel_upper_edge_hertz,
|
| 53 |
-
sampling_rate=self.sample_rate,
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
-
def call(self, inputs: NDArray) -> NDArray:
|
| 57 |
-
"""Apply this layer to inputs."""
|
| 58 |
-
|
| 59 |
-
if len(inputs.shape) != 2: # [Batch, Time]
|
| 60 |
-
raise ValueError(f"Input rank ({len(inputs.shape)}) must be 2")
|
| 61 |
-
|
| 62 |
-
# Zero pad if there isn't enough data for at least one frame (so we don't end up
|
| 63 |
-
# with size 0 axes)
|
| 64 |
-
inp = ops.pad(
|
| 65 |
-
inputs,
|
| 66 |
-
[
|
| 67 |
-
(0, 0),
|
| 68 |
-
(
|
| 69 |
-
0,
|
| 70 |
-
ops.maximum(self.window_size_samples - ops.shape(inputs)[1], 0),
|
| 71 |
-
),
|
| 72 |
-
],
|
| 73 |
-
)
|
| 74 |
-
|
| 75 |
-
# compute spectrogram
|
| 76 |
-
spectrogram = self.spectrogram(inp)
|
| 77 |
-
|
| 78 |
-
# compute mel spectrogram
|
| 79 |
-
outputs = self.log_mel(spectrogram)
|
| 80 |
-
|
| 81 |
-
return outputs
|
| 82 |
-
|
| 83 |
-
def spectrogram(self, inputs: NDArray) -> NDArray:
|
| 84 |
-
"""Compute spectrogram from raw audio."""
|
| 85 |
-
|
| 86 |
-
spectrogram = ops.stft(
|
| 87 |
-
inputs,
|
| 88 |
-
self.window_size_samples,
|
| 89 |
-
self.window_stride_samples,
|
| 90 |
-
fft_length=self.fft_len,
|
| 91 |
-
center=False,
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
spectrogram = torch.complex(*spectrogram)
|
| 95 |
-
|
| 96 |
-
spectrogram = ops.abs(spectrogram)
|
| 97 |
-
|
| 98 |
-
return spectrogram
|
| 99 |
-
|
| 100 |
-
def log_mel(self, spectrogram: NDArray) -> NDArray:
|
| 101 |
-
"""Transform spectrogram into (log) Mel scale."""
|
| 102 |
-
|
| 103 |
-
# multiply spectrogram by mel matrix
|
| 104 |
-
mel_spectrogram = ops.tensordot(spectrogram, self.mel_matrix, 1)
|
| 105 |
-
|
| 106 |
-
# compute log (with epsilon for stability)
|
| 107 |
-
log_mel_spectrogram = ops.log(ops.maximum(mel_spectrogram, self.log_epsilon))
|
| 108 |
-
|
| 109 |
-
return log_mel_spectrogram
|
| 110 |
-
|
| 111 |
-
def compute_mask(
|
| 112 |
-
self, inputs: NDArray, previous_mask: Optional[NDArray] = None
|
| 113 |
-
) -> Optional[NDArray]:
|
| 114 |
-
if previous_mask is None:
|
| 115 |
-
return None
|
| 116 |
-
|
| 117 |
-
# split up mask into frames
|
| 118 |
-
mask = ops.extract_sequences(
|
| 119 |
-
previous_mask,
|
| 120 |
-
self.window_size_samples,
|
| 121 |
-
self.window_stride_samples,
|
| 122 |
-
)
|
| 123 |
-
# mask all the frames that had masked samples in them
|
| 124 |
-
mask = ops.all(mask, axis=-1)
|
| 125 |
-
return mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|