abrahammg's picture
Update README.md
3eeb02d verified
|
raw
history blame
5.22 kB
---
license: apache-2.0
datasets:
- irlab-udc/alpaca_data_galician
language:
- gl
- en
---
# Llama3-8B Lora adapter for Galician language
This repository houses a specialized LoRA (Low-Rank Adaptation) Adapter designed specifically for fine-tuning Meta's LLaMA 3-8B Instruct version for applications involving the Galician language. The purpose of this adapter is to efficiently adapt the pre-trained model, which has been initially trained on a broad range of data and languages, to better understand and generate text in Galician.
## Adapter Description
This Lora Adapter has been specifically fine-tuned to understand and generate text in Galician. It was refined using a modified version of the [irlab-udc/alpaca_data_galician](https://huggingface.co/datasets/irlab-udc/alpaca_data_galician) dataset, enriched with synthetic data to enhance its text generation and comprehension capabilities in specific contexts.
### Technical Details
- **Base Model**: Unsloth Meta's LLaMA 3 8B Instruct (https://huggingface.co/unsloth/llama-3-8b-Instruct-bnb-4bit)
- **Fine-Tuning Platform**: LLaMA Factory
- **Infrastructure**: Finisterrae III Supercomputer, CESGA (Galicia-Spain)
- **Dataset**: [irlab-udc/alpaca_data_galician](https://huggingface.co/datasets/irlab-udc/alpaca_data_galician) (with modifications)
- **Fine-Tuning Objective**: To improve text comprehension and generation in Galician.
### Trainning parameters
The project is still in the testing phase, and the training parameters will continue to vary to find the values that result in a more accurate model. Currently, the model is trained with a set of **5000 random entries** from the dataset and the following values:
- num_train_epochs=3.0
- finetuning_type="lora"
- per_device_train_batch_size=2
- gradient_accumulation_steps=4
- lr_scheduler_type="cosine"
- learning_rate=5e-5
- max_grad_norm=1.0
## Testing The Adapter
Below, we have several examples of question-answer pairs comparing the pure Llama3 model with the Llama3 model fine tunned for the Galician language.
*Llama3-8B* 👎
```bash
User: Cal é a capital de Canadá?
Assistant: Não! Cal não é a capital de Canadá. A capital de Canadá é Ottawa.
```
*Llama3-8B-Galician-Chat-Lora* ✅ 👍
```bash
User: Cal é a capital de Canadá?
Assistant: A capital de Canadá é Ottawa.
```
*Llama3-8B* 👎
```bash
User: Cantos habitantes ten Galicia?
Assistant: Según el Instituto Nacional de Estadística (INE) de España, la población residente en Galicia al 1 de enero de 2021 era de aproximadamente 2.79 millones de personas.
```
*Llama3-8B-Galician-Chat-Lora* ✅ 👍
```bash
User: Cantos habitantes ten Galicia?
Assistant: Segundo as últimas estimacións, Galicia ten uns 2,8 millóns de habitantes.
```
## How to Use the Adapter
To use this adapter, follow the example code provided below. Ensure you have the necessary libraries installed (e.g., Hugging Face's `transformers`).
### Installation
Download de adapter from huggingface:
```bash
git clone https://huggingface.co/abrahammg/Llama3-8B-Galician-Chat-Lora
```
Install dependencies:
```bash
pip install transformers bitsandbytes "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" llmtuner xformers
```
### Run the adapter
Create a python script (ex. run_model.py):
```bash
from llmtuner import ChatModel
from llmtuner.extras.misc import torch_gc
chat_model = ChatModel(dict(
model_name_or_path="unsloth/llama-3-8b-Instruct-bnb-4bit", # use bnb-4bit-quantized Llama-3-8B-Instruct model
adapter_name_or_path="./", # load Llama3-8B-Galician-Chat-Lora adapter
finetuning_type="lora",
template="llama3",
quantization_bit=4, # load 4-bit quantized model
use_unsloth=True, # use UnslothAI's LoRA optimization for 2x faster generation
))
messages = []
while True:
query = input("\nUser: ")
if query.strip() == "exit":
break
if query.strip() == "clear":
messages = []
torch_gc()
print("History has been removed.")
continue
messages.append({"role": "user", "content": query})
print("Assistant: ", end="", flush=True)
response = ""
for new_text in chat_model.stream_chat(messages):
print(new_text, end="", flush=True)
response += new_text
print()
messages.append({"role": "assistant", "content": response})
torch_gc()
```
and run it
```bash
python run_model.py
```
# Full Merged Model 💬
You can find a the adapter merged with the Llama3-8B base model in this repo: [https://huggingface.co/abrahammg/Llama3-8B-Galician-Instruct-GGUF](https://huggingface.co/abrahammg/Llama3-8B-Galician-Instruct-GGUF)
To utilize this model within LM Studio, simply input the URL https://huggingface.co/abrahammg/Llama3-8B-Galician-Instruct-GGUF into the search box. For the best performance, ensure you set the template to LLama3.
Or pull it in **Ollama** with the command:
```bash
ollama run abrahammg/llama3-gl-chat
```
## Acknowledgement
- [meta-llama/llama3](https://github.com/meta-llama/llama3)
- [hiyouga/LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory)
- [irlab-udc/alpaca_data_galician](https://huggingface.co/datasets/irlab-udc/alpaca_data_galician)