|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- irlab-udc/alpaca_data_galician |
|
language: |
|
- gl |
|
- en |
|
--- |
|
|
|
# Llama3-8B Lora adapter for Galician language |
|
|
|
This repository houses a specialized LoRA (Low-Rank Adaptation) Adapter designed specifically for fine-tuning Meta's LLaMA 3-8B Instruct version for applications involving the Galician language. The purpose of this adapter is to efficiently adapt the pre-trained model, which has been initially trained on a broad range of data and languages, to better understand and generate text in Galician. |
|
|
|
## Adapter Description |
|
|
|
This Lora Adapter has been specifically fine-tuned to understand and generate text in Galician. It was refined using a modified version of the [irlab-udc/alpaca_data_galician](https://huggingface.co/datasets/irlab-udc/alpaca_data_galician) dataset, enriched with synthetic data to enhance its text generation and comprehension capabilities in specific contexts. |
|
|
|
### Technical Details |
|
|
|
- **Base Model**: Unsloth Meta's LLaMA 3 8B Instruct (https://huggingface.co/unsloth/llama-3-8b-Instruct-bnb-4bit) |
|
- **Fine-Tuning Platform**: LLaMA Factory |
|
- **Infrastructure**: Finisterrae III Supercomputer, CESGA (Galicia-Spain) |
|
- **Dataset**: [irlab-udc/alpaca_data_galician](https://huggingface.co/datasets/irlab-udc/alpaca_data_galician) (with modifications) |
|
- **Fine-Tuning Objective**: To improve text comprehension and generation in Galician. |
|
|
|
### Trainning parameters |
|
|
|
The project is still in the testing phase, and the training parameters will continue to vary to find the values that result in a more accurate model. Currently, the model is trained with a set of **5000 random entries** from the dataset and the following values: |
|
|
|
- num_train_epochs=3.0 |
|
- finetuning_type="lora" |
|
- per_device_train_batch_size=2 |
|
- gradient_accumulation_steps=4 |
|
- lr_scheduler_type="cosine" |
|
- learning_rate=5e-5 |
|
- max_grad_norm=1.0 |
|
|
|
## Testing The Adapter |
|
|
|
Below, we have several examples of question-answer pairs comparing the pure Llama3 model with the Llama3 model fine tunned for the Galician language. |
|
|
|
*Llama3-8B* 👎 |
|
```bash |
|
User: Cal é a capital de Canadá? |
|
Assistant: Não! Cal não é a capital de Canadá. A capital de Canadá é Ottawa. |
|
``` |
|
*Llama3-8B-Galician-Chat-Lora* ✅ 👍 |
|
```bash |
|
User: Cal é a capital de Canadá? |
|
Assistant: A capital de Canadá é Ottawa. |
|
``` |
|
*Llama3-8B* 👎 |
|
```bash |
|
User: Cantos habitantes ten Galicia? |
|
Assistant: Según el Instituto Nacional de Estadística (INE) de España, la población residente en Galicia al 1 de enero de 2021 era de aproximadamente 2.79 millones de personas. |
|
``` |
|
*Llama3-8B-Galician-Chat-Lora* ✅ 👍 |
|
```bash |
|
User: Cantos habitantes ten Galicia? |
|
Assistant: Segundo as últimas estimacións, Galicia ten uns 2,8 millóns de habitantes. |
|
``` |
|
|
|
## How to Use the Adapter |
|
|
|
To use this adapter, follow the example code provided below. Ensure you have the necessary libraries installed (e.g., Hugging Face's `transformers`). |
|
|
|
### Installation |
|
|
|
Download de adapter from huggingface: |
|
```bash |
|
git clone https://huggingface.co/abrahammg/Llama3-8B-Galician-Chat-Lora |
|
``` |
|
Install dependencies: |
|
```bash |
|
pip install transformers bitsandbytes "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" llmtuner xformers |
|
``` |
|
|
|
### Run the adapter |
|
|
|
Create a python script (ex. run_model.py): |
|
|
|
```bash |
|
from llmtuner import ChatModel |
|
from llmtuner.extras.misc import torch_gc |
|
|
|
chat_model = ChatModel(dict( |
|
model_name_or_path="unsloth/llama-3-8b-Instruct-bnb-4bit", # use bnb-4bit-quantized Llama-3-8B-Instruct model |
|
adapter_name_or_path="./", # load Llama3-8B-Galician-Chat-Lora adapter |
|
finetuning_type="lora", |
|
template="llama3", |
|
quantization_bit=4, # load 4-bit quantized model |
|
use_unsloth=True, # use UnslothAI's LoRA optimization for 2x faster generation |
|
)) |
|
|
|
messages = [] |
|
while True: |
|
query = input("\nUser: ") |
|
if query.strip() == "exit": |
|
break |
|
|
|
if query.strip() == "clear": |
|
messages = [] |
|
torch_gc() |
|
print("History has been removed.") |
|
continue |
|
|
|
messages.append({"role": "user", "content": query}) |
|
print("Assistant: ", end="", flush=True) |
|
response = "" |
|
for new_text in chat_model.stream_chat(messages): |
|
print(new_text, end="", flush=True) |
|
response += new_text |
|
print() |
|
messages.append({"role": "assistant", "content": response}) |
|
|
|
torch_gc() |
|
``` |
|
and run it |
|
```bash |
|
python run_model.py |
|
``` |
|
|
|
# Full Merged Model 💬 |
|
|
|
You can find a the adapter merged with the Llama3-8B base model in this repo: [https://huggingface.co/abrahammg/Llama3-8B-Galician-Instruct-GGUF](https://huggingface.co/abrahammg/Llama3-8B-Galician-Instruct-GGUF) |
|
|
|
To utilize this model within LM Studio, simply input the URL https://huggingface.co/abrahammg/Llama3-8B-Galician-Instruct-GGUF into the search box. For the best performance, ensure you set the template to LLama3. |
|
Or pull it in **Ollama** with the command: |
|
```bash |
|
ollama run abrahammg/llama3-gl-chat |
|
``` |
|
|
|
## Acknowledgement |
|
|
|
- [meta-llama/llama3](https://github.com/meta-llama/llama3) |
|
- [hiyouga/LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) |
|
- [irlab-udc/alpaca_data_galician](https://huggingface.co/datasets/irlab-udc/alpaca_data_galician) |
|
|