File size: 18,561 Bytes
1d9a89d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:10K<n<100K
- loss:SoftmaxLoss
base_model: symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli
widget:
- source_sentence: كير في أمريكا
  sentences:
  - ترامب يؤثر على الثقافة الأمريكية
  - لم يكن هناك أي صراع مع أي شخص.
  - فأخذ زوجان ضد إرادتهما بسبب صراحتهما.
- source_sentence: الفضائح ممتعة
  sentences:
  - الناس يحبون السماء الزرقاء.
  - قد يعتبر آخرون أنفسهم اشتراكيين.
  - سبرينغر ليست شعبية.
- source_sentence: الجميع جائعون
  sentences:
  - كان الجميع يكذبون.
  - تم سؤال الخدمة عن الرئيس الميت.
  - ستار) قاوم الربط)
- source_sentence: لونها طبيعي.
  sentences:
  - يبقيه غبي بسيط وسوف تبدو جيدة.
  - لا أحد يحمل براءة اختراع أبداً.
  - لم تكن محامية جيدة
- source_sentence: لام هو محافظ.
  sentences:
  - هذا الرجل محافظ
  - على الأرجح أنها ستلتصق بحشواته
  - كانت كلماتها واضحة وموجزة.
pipeline_tag: sentence-similarity
---

# SentenceTransformer based on symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli](https://huggingface.co/symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli](https://huggingface.co/symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli) <!-- at revision 068f854a8bdff365072583e5fbba7a9c69bd8606 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'لام هو محافظ.',
    'هذا الرجل محافظ',
    'على الأرجح أنها ستلتصق بحشواته',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 25,000 training samples
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | premise                                                                             | hypothesis                                                                        | label                                                              |
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                            | int                                                                |
  | details | <ul><li>min: 26 tokens</li><li>mean: 85.71 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.85 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>0: ~24.10%</li><li>1: ~32.80%</li><li>2: ~43.10%</li></ul> |
* Samples:
  | premise                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hypothesis                                                                        | label          |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------|
  | <code>Doom (منمنمة مثل DOOM) هي سلسلة من ألعاب الفيديو مطلق النار من منظور الشخص الأول التي طورتها id Software. تركز السلسلة على مآثر بحرية فضائية لم يكشف عن اسمها تعمل تحت رعاية شركة Union Aerospace Corporation (UAC) ، التي تحارب جحافل الشياطين والأجداد من أجل البقاء على قيد الحياة.</code>                                                                                                                                                           | <code>Doom هي أفضل لعبة مطلق النار الشخص الأول التي تم إنشاؤها</code>             | <code>2</code> |
  | <code>قال مسؤولون أمريكيون إن المسؤولين العسكريين والاستخباراتيين الأمريكيين على خلاف حول اتجاه الحرب في أفغانستان ، مما يخلق مصدرًا جديدًا للاحتكاك حيث يسعى الرئيس ترامب وفريق الأمن القومي التابع له إلى إيجاد طريقة لإنهاء الصراع المستمر منذ 17 عامًا. لدى مسؤولي الاستخبارات وجهة نظر متشائمة للصراع ، وفقًا لأشخاص مطلعين على تقييم سري مستمر ، بينما يتحدى القادة العسكريون هذا الاستنتاج بحجة أن استراتيجية السيد ترامب في جنوب آسيا تعمل....</code> | <code>مسؤولون عسكريون واستخباراتيون أمريكيون يتفقون على الحرب في أفغانستان</code> | <code>0</code> |
  | <code>The Stranger Left No Card (1952) هو فيلم بريطاني قصير من إخراج ويندي توي. فاز الفيلم بجائزة أفضل خيال في مهرجان كان السينمائي 1953 ، حيث وصفه جان كوكتو بأنه "تحفة فنية". كان أول ظهور سينمائي للممثل آلان بادل.</code>                                                                                                                                                                                                                                 | <code>ويندي توي تخرج من فيلم The Stranger Left No Card</code>                     | <code>2</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)

### Evaluation Dataset

#### Unnamed Dataset


* Size: 5,000 evaluation samples
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | premise                                                                            | hypothesis                                                                        | label                                                              |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | int                                                                |
  | details | <ul><li>min: 4 tokens</li><li>mean: 32.77 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.72 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>0: ~34.90%</li><li>1: ~32.80%</li><li>2: ~32.30%</li></ul> |
* Samples:
  | premise                                                                                                                                  | hypothesis                                                    | label          |
  |:-----------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|:---------------|
  | <code>هل المشكلة الآن أكثر حدة؟</code>                                                                                                   | <code>وقد تم بالفعل حل هذه المسألة.</code>                    | <code>0</code> |
  | <code>إن الخريطة التي تحتوي على ثقوب فيها هي تذكار لمعاهدة الاحترار العالمي وثغراتها التي يفترض أنها صارخة.</code>                       | <code>الثغرات في المعاهدة في معظمها لا يساء استخدامها.</code> | <code>2</code> |
  | <code>يغطي The Star اعتقال جورج مايكل لتعريض نفسه في غرفة رجال في حديقة ويل روجرز التذكارية في لوس أنجلوس كما لو كان يكتب مراجعة.</code> | <code>السيد (مايكل) سيحاكم</code>                             | <code>2</code> |
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 32
- `gradient_accumulation_steps`: 2
- `learning_rate`: 2e-06
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `ddp_find_unused_parameters`: False

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-06
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: False
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss   |
|:------:|:----:|:-------------:|:------:|
| 0.0320 | 25   | 1.172         | -      |
| 0.0640 | 50   | 1.1839        | -      |
| 0.0960 | 75   | 1.1595        | -      |
| 0.1280 | 100  | 1.1516        | -      |
| 0.1599 | 125  | 1.1312        | -      |
| 0.1919 | 150  | 1.1458        | -      |
| 0.2239 | 175  | 1.1202        | -      |
| 0.2559 | 200  | 1.1113        | -      |
| 0.2879 | 225  | 1.0973        | -      |
| 0.3199 | 250  | 1.1004        | -      |
| 0.3519 | 275  | 1.0892        | -      |
| 0.3839 | 300  | 1.0708        | -      |
| 0.4159 | 325  | 1.0937        | -      |
| 0.4479 | 350  | 1.0698        | -      |
| 0.4798 | 375  | 1.0893        | -      |
| 0.5118 | 400  | 1.0597        | -      |
| 0.5438 | 425  | 1.0638        | -      |
| 0.5758 | 450  | 1.0524        | -      |
| 0.6078 | 475  | 1.0673        | -      |
| 0.6398 | 500  | 1.0619        | -      |
| 0.6718 | 525  | 1.0254        | -      |
| 0.7038 | 550  | 1.0423        | -      |
| 0.7358 | 575  | 1.0175        | -      |
| 0.7678 | 600  | 1.0365        | -      |
| 0.7997 | 625  | 1.0412        | -      |
| 0.8317 | 650  | 1.0411        | -      |
| 0.8637 | 675  | 1.0287        | -      |
| 0.8957 | 700  | 1.0318        | -      |
| 0.9277 | 725  | 1.0486        | -      |
| 0.9597 | 750  | 1.0237        | -      |
| 0.9917 | 775  | 1.0199        | -      |
| 0.9994 | 781  | -             | 1.1031 |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers and SoftmaxLoss
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->