|
import math |
|
import torch |
|
from torch import Tensor |
|
from torch.optim.optimizer import Optimizer |
|
from typing import List, Optional |
|
|
|
|
|
class SophiaG(Optimizer): |
|
def __init__(self, params, lr=1e-4, betas=(0.965, 0.99), rho = 0.04, |
|
weight_decay=1e-1, *, maximize: bool = False, |
|
capturable: bool = False): |
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
|
if not 0.0 <= rho: |
|
raise ValueError("Invalid rho parameter at index 1: {}".format(rho)) |
|
if not 0.0 <= weight_decay: |
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
|
defaults = dict(lr=lr, betas=betas, rho=rho, |
|
weight_decay=weight_decay, |
|
maximize=maximize, capturable=capturable) |
|
super(SophiaG, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault('maximize', False) |
|
group.setdefault('capturable', False) |
|
state_values = list(self.state.values()) |
|
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step']) |
|
if not step_is_tensor: |
|
for s in state_values: |
|
s['step'] = torch.tensor(float(s['step'])) |
|
|
|
@torch.no_grad() |
|
def update_hessian(self): |
|
for group in self.param_groups: |
|
beta1, beta2 = group['betas'] |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
state['step'] = torch.zeros((1,), dtype=torch.float, device=p.device) \ |
|
if self.defaults['capturable'] else torch.tensor(0.) |
|
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
state['hessian'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
if 'hessian' not in state.keys(): |
|
state['hessian'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
state['hessian'].mul_(beta2).addcmul_(p.grad, p.grad, value=1 - beta2) |
|
|
|
|
|
@torch.no_grad() |
|
def step(self, closure=None, bs=5120): |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
params_with_grad = [] |
|
grads = [] |
|
exp_avgs = [] |
|
state_steps = [] |
|
hessian = [] |
|
beta1, beta2 = group['betas'] |
|
|
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
params_with_grad.append(p) |
|
|
|
if p.grad.is_sparse: |
|
raise RuntimeError('Hero does not support sparse gradients') |
|
grads.append(p.grad) |
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
state['step'] = torch.zeros((1,), dtype=torch.float, device=p.device) \ |
|
if self.defaults['capturable'] else torch.tensor(0.) |
|
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
state['hessian'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
if 'hessian' not in state.keys(): |
|
state['hessian'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
exp_avgs.append(state['exp_avg']) |
|
state_steps.append(state['step']) |
|
hessian.append(state['hessian']) |
|
|
|
if self.defaults['capturable']: |
|
bs = torch.ones((1,), dtype=torch.float, device=p.device) * bs |
|
|
|
sophiag(params_with_grad, |
|
grads, |
|
exp_avgs, |
|
hessian, |
|
state_steps, |
|
bs=bs, |
|
beta1=beta1, |
|
beta2=beta2, |
|
rho=group['rho'], |
|
lr=group['lr'], |
|
weight_decay=group['weight_decay'], |
|
maximize=group['maximize'], |
|
capturable=group['capturable']) |
|
|
|
return loss |
|
|
|
def sophiag(params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
hessian: List[Tensor], |
|
state_steps: List[Tensor], |
|
capturable: bool = False, |
|
*, |
|
bs: int, |
|
beta1: float, |
|
beta2: float, |
|
rho: float, |
|
lr: float, |
|
weight_decay: float, |
|
maximize: bool): |
|
|
|
if not all(isinstance(t, torch.Tensor) for t in state_steps): |
|
raise RuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors") |
|
|
|
|
|
func = _single_tensor_sophiag |
|
|
|
func(params, |
|
grads, |
|
exp_avgs, |
|
hessian, |
|
state_steps, |
|
bs=bs, |
|
beta1=beta1, |
|
beta2=beta2, |
|
rho=rho, |
|
lr=lr, |
|
weight_decay=weight_decay, |
|
maximize=maximize, |
|
capturable=capturable) |
|
|
|
def _single_tensor_sophiag(params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
hessian: List[Tensor], |
|
state_steps: List[Tensor], |
|
*, |
|
bs: int, |
|
beta1: float, |
|
beta2: float, |
|
rho: float, |
|
lr: float, |
|
weight_decay: float, |
|
maximize: bool, |
|
capturable: bool): |
|
|
|
for i, param in enumerate(params): |
|
grad = grads[i] if not maximize else -grads[i] |
|
exp_avg = exp_avgs[i] |
|
hess = hessian[i] |
|
step_t = state_steps[i] |
|
|
|
if capturable: |
|
assert param.is_cuda and step_t.is_cuda and bs.is_cuda |
|
|
|
if torch.is_complex(param): |
|
grad = torch.view_as_real(grad) |
|
exp_avg = torch.view_as_real(exp_avg) |
|
hess = torch.view_as_real(hess) |
|
param = torch.view_as_real(param) |
|
|
|
|
|
step_t += 1 |
|
|
|
|
|
param.mul_(1 - lr * weight_decay) |
|
|
|
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) |
|
|
|
if capturable: |
|
step = step_t |
|
step_size = lr |
|
step_size_neg = step_size.neg() |
|
|
|
ratio = (exp_avg.abs() / (rho * bs * hess + 1e-15)).clamp(None,1) |
|
param.addcmul_(exp_avg.sign(), ratio, value=step_size_neg) |
|
else: |
|
step = step_t.item() |
|
step_size_neg = - lr |
|
|
|
ratio = (exp_avg.abs() / (rho * bs * hess + 1e-15)).clamp(None,1) |
|
param.addcmul_(exp_avg.sign(), ratio, value=step_size_neg) |