Suri / utils.py
account18hackathon's picture
Upload 3 files
4e40454
# -*- coding: utf-8 -*-
from __future__ import print_function
import json
import os
import struct
import sys
import platform
import re
import time
import traceback
import requests
import socket
import random
import math
import numpy as np
import torch
import logging
import datetime
from torch.optim.lr_scheduler import _LRScheduler
from torch import nn
import torch.nn.functional as F
from torch.nn.modules.loss import _WeightedLoss
def seed_all(seed_value, cuda_deterministic=False):
"""
设置所有的随机种子
"""
random.seed(seed_value)
os.environ['PYTHONHASHSEED'] = str(seed_value)
np.random.seed(seed_value)
torch.manual_seed(seed_value)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value)
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
if cuda_deterministic: # slower, more reproducible
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else: # faster, less reproducible
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
def set_log(logfileName, rank=-1):
"""
master节点保存所有log,其他节点只保存warning及error
"""
log_file_folder = os.path.dirname(logfileName)
time_now = datetime.datetime.now()
logfileName = f'{logfileName}_{time_now.year}_{time_now.month}_{time_now.day}_{time_now.hour}_{time_now.minute}.log'
if not os.path.exists(log_file_folder):
os.makedirs(log_file_folder)
else:
pass
logging.basicConfig(level=logging.INFO if rank in [-1, 0] else logging.WARN,
format='[%(asctime)s %(levelname)s %(filename)s line %(lineno)d %(process)d] %(message)s',
datefmt='[%X]',
handlers=[logging.FileHandler(logfileName), logging.StreamHandler()]
)
logger = logging.getLogger()
return logger
def save_ckpt(epoch, model, optimizer, scheduler, losses, model_name, ckpt_folder):
"""
保存模型checkpoint
"""
if not os.path.exists(ckpt_folder):
os.makedirs(ckpt_folder)
torch.save(
{
'epoch': epoch,
'model_state_dict': model.module.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'losses': losses,
},
f'{ckpt_folder}{model_name}_{epoch}.pth'
)
def save_simple_ckpt(model, model_name, ckpt_folder):
"""
保存模型checkpoint
"""
if not os.path.exists(ckpt_folder):
os.makedirs(ckpt_folder)
torch.save(
{
'model_state_dict': model.module.state_dict()
},
f'{ckpt_folder}{model_name}.pth'
)
def save_best_ckpt(epoch, model, optimizer, scheduler, losses, model_name, ckpt_folder):
"""
保存模型checkpoint
"""
if not os.path.exists(ckpt_folder):
os.makedirs(ckpt_folder)
torch.save(
{
'epoch': epoch,
'model_state_dict': model.module.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'losses': losses,
},
f'{ckpt_folder}{model_name}_best.pth'
)
def get_reduced(tensor, current_device, dest_device, world_size):
"""
将不同GPU上的变量或tensor集中在主GPU上,并得到均值
"""
tensor = tensor.clone().detach() if torch.is_tensor(tensor) else torch.tensor(tensor)
tensor = tensor.to(current_device)
torch.distributed.reduce(tensor, dst=dest_device)
tensor_mean = tensor.item() / world_size
return tensor_mean
def get_ndtensor_reduced(tensor, current_device, dest_device, world_size):
"""
将不同GPU上的变量或tensor集中在主GPU上,并得到均值, 需要是2维张量
"""
tensor = tensor.clone().detach() if torch.is_tensor(tensor) else torch.tensor(tensor)
tensor = tensor.to(current_device)
torch.distributed.reduce(tensor, dst=dest_device)
tensor_mean = torch.zeros(tensor.shape)
if len(tensor.shape) == 2:
for i in range(tensor.shape[0]):
for j in range(tensor.shape[1]):
tensor_mean[i,j] = tensor[i,j].item() / world_size
elif len(tensor.shape) == 1:
for i in range(tensor.shape[0]):
tensor_mean[i] = tensor[i].item() / world_size
return tensor_mean
def numel(m: torch.nn.Module, only_trainable: bool = False):
"""
returns the total number of parameters used by `m` (only counting
shared parameters once); if `only_trainable` is True, then only
includes parameters with `requires_grad = True`
"""
parameters = m.parameters()
if only_trainable:
parameters = list(p for p in parameters if p.requires_grad)
unique = dict((p.data_ptr(), p) for p in parameters).values()
return sum(p.numel() for p in unique)
def label_smooth(y, K, epsilon=0.1):
"""
Label smoothing for multiclass labels
One hot encode labels `y` over `K` classes. `y` should be of the form [1, 6, 3, etc.]
"""
m = len(y)
out = np.ones((m, K)) * epsilon / K
for index in range(m):
out[index][y[index] - 1] += 1 - epsilon
return torch.tensor(out)
class SequentialDistributedSampler(torch.utils.data.sampler.Sampler):
"""
Distributed Sampler that subsamples indicies sequentially,
making it easier to collate all results at the end.
Even though we only use this sampler for eval and predict (no training),
which means that the model params won't have to be synced (i.e. will not hang
for synchronization even if varied number of forward passes), we still add extra
samples to the sampler to make it evenly divisible (like in `DistributedSampler`)
to make it easy to `gather` or `reduce` resulting tensors at the end of the loop.
"""
def __init__(self, dataset, batch_size, world_size, rank=None, num_replicas=None):
if num_replicas is None:
if not torch.distributed.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = world_size
if rank is None:
if not torch.distributed.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = torch.distributed.get_rank()
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.batch_size = batch_size
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.batch_size / self.num_replicas)) * self.batch_size
self.total_size = self.num_samples * self.num_replicas
def __iter__(self):
indices = list(range(len(self.dataset)))
# add extra samples to make it evenly divisible
indices += [indices[-1]] * (self.total_size - len(indices))
# subsample
indices = indices[self.rank * self.num_samples : (self.rank + 1) * self.num_samples]
return iter(indices)
def __len__(self):
return self.num_samples
def distributed_concat(tensor, num_total_examples, world_size):
"""
合并不同进程的inference结果
"""
output_tensors = [tensor.clone() for _ in range(world_size)]
torch.distributed.all_gather(output_tensors, tensor)
concat = torch.cat(output_tensors, dim=0)
# truncate the dummy elements added by SequentialDistributedSampler
return concat[:num_total_examples]
class CosineAnnealingWarmupRestarts(_LRScheduler):
"""
optimizer (Optimizer): Wrapped optimizer.
first_cycle_steps (int): First cycle step size.
cycle_mult(float): Cycle steps magnification. Default: -1.
max_lr(float): First cycle's max learning rate. Default: 0.1.
min_lr(float): Min learning rate. Default: 0.001.
warmup_steps(int): Linear warmup step size. Default: 0.
gamma(float): Decrease rate of max learning rate by cycle. Default: 1.
last_epoch (int): The index of last epoch. Default: -1.
"""
def __init__(self,
optimizer : torch.optim.Optimizer,
first_cycle_steps : int,
cycle_mult : float = 1.,
max_lr : float = 0.1,
min_lr : float = 0.001,
warmup_steps : int = 0,
gamma : float = 1.,
last_epoch : int = -1
):
assert warmup_steps < first_cycle_steps
self.first_cycle_steps = first_cycle_steps # first cycle step size
self.cycle_mult = cycle_mult # cycle steps magnification
self.base_max_lr = max_lr # first max learning rate
self.max_lr = max_lr # max learning rate in the current cycle
self.min_lr = min_lr # min learning rate
self.warmup_steps = warmup_steps # warmup step size
self.gamma = gamma # decrease rate of max learning rate by cycle
self.cur_cycle_steps = first_cycle_steps # first cycle step size
self.cycle = 0 # cycle count
self.step_in_cycle = last_epoch # step size of the current cycle
super(CosineAnnealingWarmupRestarts, self).__init__(optimizer, last_epoch)
# set learning rate min_lr
self.init_lr()
def init_lr(self):
self.base_lrs = []
for param_group in self.optimizer.param_groups:
param_group['lr'] = self.min_lr
self.base_lrs.append(self.min_lr)
def get_lr(self):
if self.step_in_cycle == -1:
return self.base_lrs
elif self.step_in_cycle < self.warmup_steps:
return [(self.max_lr - base_lr)*self.step_in_cycle / self.warmup_steps + base_lr for base_lr in self.base_lrs]
else:
return [base_lr + (self.max_lr - base_lr) \
* (1 + math.cos(math.pi * (self.step_in_cycle-self.warmup_steps) \
/ (self.cur_cycle_steps - self.warmup_steps))) / 2
for base_lr in self.base_lrs]
def step(self, epoch=None):
if epoch is None:
epoch = self.last_epoch + 1
self.step_in_cycle = self.step_in_cycle + 1
if self.step_in_cycle >= self.cur_cycle_steps:
self.cycle += 1
self.step_in_cycle = self.step_in_cycle - self.cur_cycle_steps
self.cur_cycle_steps = int((self.cur_cycle_steps - self.warmup_steps) * self.cycle_mult) + self.warmup_steps
else:
if epoch >= self.first_cycle_steps:
if self.cycle_mult == 1.:
self.step_in_cycle = epoch % self.first_cycle_steps
self.cycle = epoch // self.first_cycle_steps
else:
n = int(math.log((epoch / self.first_cycle_steps * (self.cycle_mult - 1) + 1), self.cycle_mult))
self.cycle = n
self.step_in_cycle = epoch - int(self.first_cycle_steps * (self.cycle_mult ** n - 1) / (self.cycle_mult - 1))
self.cur_cycle_steps = self.first_cycle_steps * self.cycle_mult ** (n)
else:
self.cur_cycle_steps = self.first_cycle_steps
self.step_in_cycle = epoch
self.max_lr = self.base_max_lr * (self.gamma**self.cycle)
self.last_epoch = math.floor(epoch)
for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
param_group['lr'] = lr
class DistanceLoss(_WeightedLoss):
"""
CrossEntropyLoss with Distance Weighted
"""
def __init__(self, weight=None, reduction='mean', ignore_index = None):
super().__init__(weight=weight, reduction=reduction)
self.weight = weight
self.reduction = reduction
self.ignore_index = ignore_index
def forward(self, inputs, targets):
if len(inputs.shape) > 2:
inputs = inputs.reshape(-1, inputs.size(-1))
if len(targets.shape) > 1:
targets = targets.reshape(-1)
if self.ignore_index is not None:
keep_index = (targets != self.ignore_index).nonzero(as_tuple=True)[0]
targets = torch.index_select(targets, 0, keep_index) #targets[targets != self.ignore_index]
inputs = torch.index_select(inputs, 0, keep_index)
lsm = F.log_softmax(inputs, -1)
targets = torch.empty(size=(targets.size(0), inputs.size(-1)), device=targets.device).fill_(0).scatter_(1, targets.data.unsqueeze(1), 1)
if self.weight is not None:
lsm = lsm * self.weight.unsqueeze(0)
loss = -(targets * lsm).sum(-1)
inputs = nn.Softmax(dim=-1)(inputs)[..., 1:-1].argmax(dim=-1) + 1
# print('inputs', inputs.device, inputs.shape)
targets = nn.Softmax(dim=-1)(targets)[..., 1:-1].argmax(dim=-1) + 1
# print('targets', targets.device, targets.shape)
distance = abs(inputs - targets) + 1e-2
# print('loss.shape', loss.shape)
# print('distance.shape', distance.shape)
loss = loss * distance
if self.reduction == 'sum':
loss = loss.sum()
elif self.reduction == 'mean':
loss = loss.mean()
return loss
class LabelSmoothCrossEntropyLoss(_WeightedLoss):
"""
CrossEntropyLoss with Label Somoothing
"""
def __init__(self, weight=None, reduction='mean', smoothing=0.0):
super().__init__(weight=weight, reduction=reduction)
self.smoothing = smoothing
self.weight = weight
self.reduction = reduction
@staticmethod
def _smooth_one_hot(targets: torch.Tensor, n_classes: int, smoothing=0.0):
assert 0 <= smoothing < 1
with torch.no_grad():
targets = torch.empty(size=(targets.size(0), n_classes),
device=targets.device) \
.fill_(smoothing / (n_classes - 1)) \
.scatter_(1, targets.data.unsqueeze(1), 1. - smoothing)
return targets
def forward(self, inputs, targets):
targets = LabelSmoothCrossEntropyLoss._smooth_one_hot(targets, inputs.size(-1),
self.smoothing)
lsm = F.log_softmax(inputs, -1)
if self.weight is not None:
lsm = lsm * self.weight.unsqueeze(0)
loss = -(targets * lsm).sum(-1)
if self.reduction == 'sum':
loss = loss.sum()
elif self.reduction == 'mean':
loss = loss.mean()
return loss