--- library_name: transformers license: agpl-3.0 base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: PhoLexiContent-10304 results: [] --- # PhoLexiContent-10304 This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2676 - Accuracy: 0.9379 - F1: 0.9072 - Precision: 0.9100 - Recall: 0.9046 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.7189 | 2.7586 | 100 | 0.1735 | 0.9437 | 0.9157 | 0.9199 | 0.9116 | | 0.178 | 5.5172 | 200 | 0.1864 | 0.9408 | 0.9099 | 0.9211 | 0.8998 | | 0.0931 | 8.2759 | 300 | 0.2137 | 0.9418 | 0.9124 | 0.9182 | 0.9070 | | 0.0931 | 11.0345 | 400 | 0.2234 | 0.9408 | 0.9129 | 0.9096 | 0.9163 | | 0.0564 | 13.7931 | 500 | 0.2346 | 0.9370 | 0.9075 | 0.9030 | 0.9122 | | 0.0334 | 16.5517 | 600 | 0.2652 | 0.9350 | 0.9037 | 0.9030 | 0.9044 | | 0.0334 | 19.3103 | 700 | 0.2676 | 0.9379 | 0.9072 | 0.9100 | 0.9046 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0