--- base_model: aubmindlab/bert-base-arabertv2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: medicalBert results: [] --- # medicalBert This model is a fine-tuned version of [aubmindlab/bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0432 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 19 | 1.3351 | 0.6579 | | No log | 2.0 | 38 | 0.7920 | 0.8289 | | No log | 3.0 | 57 | 0.4334 | 0.8684 | | No log | 4.0 | 76 | 0.2400 | 0.9605 | | No log | 5.0 | 95 | 0.1408 | 0.9868 | | No log | 6.0 | 114 | 0.1014 | 1.0 | | No log | 7.0 | 133 | 0.0681 | 1.0 | | No log | 8.0 | 152 | 0.0478 | 1.0 | | No log | 9.0 | 171 | 0.0442 | 1.0 | | No log | 10.0 | 190 | 0.0432 | 1.0 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2