|
import os |
|
from torch.utils.data import Dataset |
|
import os |
|
import json |
|
import numpy as np |
|
import torch |
|
from utils_prompt import * |
|
|
|
img_shape = { |
|
"resnet": (512, 2048), |
|
"clip": (49, 2048), |
|
"detr": (100, 256), |
|
} |
|
|
|
def load_data_std(args): |
|
problems = json.load(open(os.path.join(args.data_root, 'scienceqa/problems.json'))) |
|
pid_splits = json.load(open(os.path.join(args.data_root, 'scienceqa/pid_splits.json'))) |
|
captions = json.load(open(args.caption_file))["captions"] |
|
|
|
for qid in problems: |
|
problems[qid]['caption'] = captions[qid] if qid in captions else "" |
|
|
|
train_qids = pid_splits['%s' % (args.train_split)] |
|
val_qids = pid_splits['%s' % (args.val_split)] |
|
test_qids = pid_splits['%s' % (args.test_split)] |
|
print(f"number of train problems: {len(train_qids)}\n") |
|
print(f"number of val problems: {len(val_qids)}\n") |
|
print(f"number of test problems: {len(test_qids)}\n") |
|
|
|
qids = {'train': train_qids, 'val':val_qids,'test':test_qids} |
|
return problems, qids, |
|
|
|
def load_data_img(args): |
|
problems = json.load(open(os.path.join(args.data_root, 'scienceqa/problems.json'))) |
|
pid_splits = json.load(open(os.path.join(args.data_root, 'scienceqa/pid_splits.json'))) |
|
captions = json.load(open(args.caption_file))["captions"] |
|
name_maps = json.load(open('vision_features/name_map.json')) |
|
|
|
|
|
if args.img_type == "resnet": |
|
image_features = np.load('vision_features/resnet.npy') |
|
image_features = np.expand_dims(image_features, axis=1) |
|
image_features = image_features.repeat(512, axis=1) |
|
elif args.img_type == "clip": |
|
image_features = np.load('vision_features/clip.npy') |
|
elif args.img_type == "detr": |
|
image_features = np.load('vision_features/detr.npy') |
|
else: |
|
image_features = np.load('vision_features/detr.npy') |
|
print("img_features size: ", image_features.shape) |
|
|
|
for qid in problems: |
|
problems[qid]['caption'] = captions[qid] if qid in captions else "" |
|
|
|
train_qids = pid_splits['%s' % (args.train_split)] |
|
val_qids = pid_splits['%s' % (args.val_split)] |
|
test_qids = pid_splits['%s' % (args.test_split)] |
|
print(f"number of train problems: {len(train_qids)}\n") |
|
print(f"number of val problems: {len(val_qids)}\n") |
|
print(f"number of test problems: {len(test_qids)}\n") |
|
|
|
qids = {'train': train_qids, 'val':val_qids,'test':test_qids} |
|
return problems, qids, name_maps, image_features |
|
|
|
class ScienceQADatasetStd(Dataset): |
|
""" |
|
Creating a custom dataset for reading the dataset and |
|
loading it into the dataloader to pass it to the |
|
neural network for finetuning the model |
|
|
|
""" |
|
|
|
def __init__( |
|
self, problems, qids, tokenizer, source_len, target_len, args, test_le=None |
|
): |
|
self.tokenizer = tokenizer |
|
self.data = {qid : problems[qid] for qid in qids} |
|
self.source_len = source_len |
|
self.summ_len = target_len |
|
self.target_text = [] |
|
self.source_text = [] |
|
if test_le is not None: |
|
test_le_data =json.load(open(test_le))["preds"] |
|
else: |
|
test_le_data = None |
|
idx = 0 |
|
for qid in self.data: |
|
if test_le_data is not None: |
|
curr_le_data = test_le_data[idx] |
|
idx += 1 |
|
else: |
|
curr_le_data = None |
|
prompt, target = build_train_pair(problems, qid, args, curr_le_data) |
|
self.target_text.append(target) |
|
self.source_text.append(prompt) |
|
|
|
def __len__(self): |
|
return len(self.target_text) |
|
|
|
def __getitem__(self, index): |
|
source_text = str(self.source_text[index]) |
|
target_text = str(self.target_text[index]) |
|
|
|
|
|
source_text = " ".join(source_text.split()) |
|
target_text = " ".join(target_text.split()) |
|
|
|
source = self.tokenizer.batch_encode_plus( |
|
[source_text], |
|
max_length=self.source_len, |
|
pad_to_max_length=True, |
|
truncation=True, |
|
padding="max_length", |
|
return_tensors="pt", |
|
) |
|
target = self.tokenizer.batch_encode_plus( |
|
[target_text], |
|
max_length=self.summ_len, |
|
pad_to_max_length=True, |
|
truncation=True, |
|
padding="max_length", |
|
return_tensors="pt", |
|
) |
|
source_ids = source["input_ids"].squeeze() |
|
source_mask = source["attention_mask"].squeeze() |
|
target_ids = target["input_ids"].squeeze().tolist() |
|
|
|
return { |
|
"input_ids": source_ids, |
|
"attention_mask": source_mask, |
|
"labels": target_ids, |
|
} |
|
|
|
|
|
class ScienceQADatasetImg(Dataset): |
|
""" |
|
Creating a custom dataset for reading the dataset and |
|
loading it into the dataloader to pass it to the |
|
neural network for finetuning the model |
|
|
|
""" |
|
|
|
def __init__( |
|
self, problems, qids, name_maps, tokenizer, source_len, target_len, args, image_features, test_le=None |
|
): |
|
""" |
|
Initializes a Dataset class |
|
|
|
Args: |
|
dataframe (pandas.DataFrame): Input dataframe |
|
tokenizer (transformers.tokenizer): Transformers tokenizer |
|
source_len (int): Max length of source text |
|
target_len (int): Max length of target text |
|
source_text (str): column name of source text |
|
target_text (str): column name of target text |
|
""" |
|
self.tokenizer = tokenizer |
|
self.data = {qid : problems[qid] for qid in qids} |
|
self.source_len = source_len |
|
self.summ_len = target_len |
|
self.target_text = [] |
|
self.source_text = [] |
|
self.image_ids = [] |
|
if test_le is not None: |
|
test_le_data =json.load(open(test_le))["preds"] |
|
else: |
|
test_le_data = None |
|
idx = 0 |
|
for qid in self.data: |
|
if test_le_data is not None: |
|
curr_le_data = test_le_data[idx] |
|
idx += 1 |
|
else: |
|
curr_le_data = None |
|
prompt, target = build_train_pair(problems, qid, args, curr_le_data) |
|
self.target_text.append(target) |
|
self.source_text.append(prompt) |
|
if str(qid) in name_maps: |
|
i_vectors = image_features[int(name_maps[str(qid)])] |
|
self.image_ids.append(i_vectors) |
|
else: |
|
shape = img_shape[args.img_type] |
|
self.image_ids.append(np.zeros(shape)) |
|
|
|
def __len__(self): |
|
"""returns the length of dataframe""" |
|
|
|
return len(self.target_text) |
|
|
|
def __getitem__(self, index): |
|
"""return the input ids, attention masks and target ids""" |
|
|
|
source_text = str(self.source_text[index]) |
|
target_text = str(self.target_text[index]) |
|
image_ids = self.image_ids[index] |
|
|
|
|
|
source_text = " ".join(source_text.split()) |
|
target_text = " ".join(target_text.split()) |
|
|
|
source = self.tokenizer.batch_encode_plus( |
|
[source_text], |
|
max_length=self.source_len, |
|
pad_to_max_length=True, |
|
truncation=True, |
|
padding="max_length", |
|
return_tensors="pt", |
|
) |
|
target = self.tokenizer.batch_encode_plus( |
|
[target_text], |
|
max_length=self.summ_len, |
|
pad_to_max_length=True, |
|
truncation=True, |
|
padding="max_length", |
|
return_tensors="pt", |
|
) |
|
source_ids = source["input_ids"].squeeze() |
|
source_mask = source["attention_mask"].squeeze() |
|
target_ids = target["input_ids"].squeeze().tolist() |
|
|
|
image_ids = torch.tensor(image_ids).squeeze() |
|
|
|
return { |
|
"input_ids": source_ids, |
|
"attention_mask": source_mask, |
|
"image_ids": image_ids, |
|
"labels": target_ids, |
|
} |
|
|