adalbertojunior commited on
Commit
b7d5dc0
1 Parent(s): 5e1147e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -1
README.md CHANGED
@@ -7,4 +7,30 @@ language:
7
 
8
  This model draws inspiration from [SOLAR](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0), but introduces a novel approach to increasing the model's depth without the traditional method of duplicating layers.
9
  By rearranging the order of layers during inference, it maintains the advantages of depth upscaling while preserving the original parameter count.
10
- Furthermore, it undergoes additional fine-tuning using the Dolphin dataset. The foundational architecture for this experiment is based on [Dolphin](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  This model draws inspiration from [SOLAR](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0), but introduces a novel approach to increasing the model's depth without the traditional method of duplicating layers.
9
  By rearranging the order of layers during inference, it maintains the advantages of depth upscaling while preserving the original parameter count.
10
+ Furthermore, it undergoes additional fine-tuning using the Dolphin dataset. The foundational architecture for this experiment is based on [Dolphin](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser).
11
+
12
+ **Use**
13
+
14
+ ```python
15
+ # pip install transformers
16
+ from transformers import AutoTokenizer, AutoModelForCausalLM
17
+
18
+ model_id = "adalbertojunior/DUSMistral"
19
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
20
+ model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
21
+
22
+ # Format message with the CHATML chat template
23
+ messages = [{"role": "user", "content": "Hello, how are you?"}]
24
+ input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
25
+
26
+
27
+ gen_tokens = model.generate(
28
+ input_ids,
29
+ max_new_tokens=100,
30
+ do_sample=True,
31
+ temperature=0.3,
32
+ )
33
+
34
+ gen_text = tokenizer.decode(gen_tokens[0])
35
+ print(gen_text)
36
+ ```