--- datasets: - cognitivecomputations/dolphin language: - en --- This model draws inspiration from [SOLAR](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0), but introduces a novel approach to increasing the model's depth without the traditional method of duplicating layers. By rearranging the order of layers during inference, it maintains the advantages of depth upscaling while preserving the original parameter count. Furthermore, it undergoes additional fine-tuning using the Dolphin dataset. The foundational architecture for this experiment is based on [Dolphin](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser). **Use** ```python # pip install transformers from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "adalbertojunior/DUSMistral" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True) # Format message with the CHATML chat template messages = [{"role": "user", "content": "Hello, how are you?"}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") gen_tokens = model.generate( input_ids, max_new_tokens=100, do_sample=True, temperature=0.3, ) gen_text = tokenizer.decode(gen_tokens[0]) print(gen_text) ```