File size: 1,319 Bytes
bb150df aad37f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
license: mit
language:
- en
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
---
This is plain vanilla exported as onnx. I am researching the offline use of various models, and thought might come in handy for the commmunity
Example use
#0. download and unzip the package into a subfolder in you project folder
#1. Create a new python environment
python -m venv llama_env
#2. activate the environment
llama_env\Scripts\activate
#3. Install onnx runtime
pip install onnx onnxruntime-gpu
#4. Install transformers and py/torch
pip install transformers
pip install torch
pip install pytorch
#I had to run this when I had a conflic
python -m pip install --upgrade pip
python -m pip install "numpy<2"
#I use VSCode, so if you'd like:
#Install Jupyter and create notebook
pip install jupyter
code #run vscode
import onnxruntime as ort
import torch
import numpy as np
# Load the ONNX model
onnx_model_path = "payhTo/llama3.1.onnx"
session = ort.InferenceSession(onnx_model_path)
# Check the model's input and output names and shapes
for input_meta in session.get_inputs():
print(f"Input Name: {input_meta.name}, Shape: {input_meta.shape}, Type: {input_meta.type}")
for output_meta in session.get_outputs():
print(f"Output Name: {output_meta.name}, Shape: {output_meta.shape}, Type: {output_meta.type}")
|