from transformers import Blip2Processor, Blip2ForConditionalGeneration from typing import Dict, List, Any from PIL import Image from transformers import pipeline import requests import torch class EndpointHandler(): def __init__(self, path=""): """ path: """ self.device = "cuda" if torch.cuda.is_available() else "cpu" self.processor = Blip2Processor.from_pretrained(path) self.model = Blip2ForConditionalGeneration.from_pretrained(path, torch_dtype=torch.float16).to(self.device) def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str` | `PIL.Image` | `np.array`) kwargs Return: A :obj:`list` | `dict`: will be serialized and returned """ result = {} inputs = data.pop("inputs", data) image_url = inputs['image_url'] if "prompt" in inputs: prompt = inputs["prompt"] else: prompt = None image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB') if prompt: processed_image = self.processor(images=image, text=prompt, return_tensors="pt").to(self.device, torch.float16) else: processed_image = self.processor(images=image, return_tensors="pt").to(self.device, torch.float16) output = self.model.generate(**processed_image) text_output = self.processor.decode(output[0], skip_special_tokens=True) result["text_output"] = text_output return result