--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-1k results: [] --- # distilbert-1k This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0986 - Accuracy: 0.3333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 1.0989 | 1.0 | 6000 | 1.0986 | 0.3333 | | 1.0993 | 2.0 | 12000 | 1.0986 | 0.3333 | | 1.0992 | 3.0 | 18000 | 1.0986 | 0.3333 | | 1.0993 | 4.0 | 24000 | 1.0986 | 0.3333 | | 1.0985 | 5.0 | 30000 | 1.0986 | 0.3333 | | 1.0988 | 6.0 | 36000 | 1.0986 | 0.3333 | | 1.0993 | 7.0 | 42000 | 1.0986 | 0.3333 | | 1.0983 | 8.0 | 48000 | 1.0986 | 0.3333 | | 1.0983 | 9.0 | 54000 | 1.0986 | 0.3333 | | 1.0982 | 10.0 | 60000 | 1.0986 | 0.3333 | | 1.0986 | 11.0 | 66000 | 1.0986 | 0.3333 | | 1.0985 | 12.0 | 72000 | 1.0986 | 0.3333 | | 1.0983 | 13.0 | 78000 | 1.0986 | 0.3333 | | 1.0987 | 14.0 | 84000 | 1.0986 | 0.3333 | | 1.0992 | 15.0 | 90000 | 1.0986 | 0.3333 | | 1.099 | 16.0 | 96000 | 1.0986 | 0.3333 | | 1.0991 | 17.0 | 102000 | 1.0986 | 0.3333 | | 1.0982 | 18.0 | 108000 | 1.0986 | 0.3333 | | 1.0989 | 19.0 | 114000 | 1.0986 | 0.3333 | | 1.099 | 20.0 | 120000 | 1.0986 | 0.3333 | | 1.0991 | 21.0 | 126000 | 1.0986 | 0.3333 | | 1.099 | 22.0 | 132000 | 1.0986 | 0.3333 | | 1.099 | 23.0 | 138000 | 1.0986 | 0.3333 | | 1.0984 | 24.0 | 144000 | 1.0986 | 0.3333 | | 1.0985 | 25.0 | 150000 | 1.0986 | 0.3333 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.0.0+cu117 - Datasets 2.19.0 - Tokenizers 0.19.1