--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-food102 results: [] --- # vit-base-patch16-224-finetuned-food102 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5096 - Accuracy: 0.8684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 3.3941 | 0.9997 | 717 | 0.6625 | 0.8351 | | 2.6442 | 1.9993 | 1434 | 0.5420 | 0.8597 | | 2.1182 | 2.9990 | 2151 | 0.5096 | 0.8684 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.1.0+cu118 - Datasets 3.0.2 - Tokenizers 0.20.1