First trained solution
Browse files- README.md +37 -0
- aditya-ppo-LL.zip +3 -0
- aditya-ppo-LL/_stable_baselines3_version +1 -0
- aditya-ppo-LL/data +99 -0
- aditya-ppo-LL/policy.optimizer.pth +3 -0
- aditya-ppo-LL/policy.pth +3 -0
- aditya-ppo-LL/pytorch_variables.pth +3 -0
- aditya-ppo-LL/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 260.86 +/- 18.36
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
aditya-ppo-LL.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea4871ef48218e0bc26710f662840c2df4c8976be4bd0c285c165c63f149bd53
|
3 |
+
size 146669
|
aditya-ppo-LL/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
aditya-ppo-LL/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fba64e9a680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fba64e9a710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fba64e9a7a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fba64e9a830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fba64e9a8c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fba64e9a950>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fba64e9a9e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fba64e9aa70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fba64e9ab00>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fba64e9ab90>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fba64e9ac20>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fba64e9acb0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fba64e95c40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1693767653263083092,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0CNL4cLFC86m9SPvD/CL77K7g9vcjiPgAAgD8AAAAAuuJaPs/EED3Nm3Y6VpJyOdYLpT5NndG5AACAPwAAgD/Nego9e36CujG6KrNEmJavFmxVusIgzjMAAIA/AACAP40/S76IqIY+uxOvPcpAZ77v2WO8rvYiOwAAAAAAAAAAtVuWvmYJgT+YQMC+7DUPvxhVgL4YBBe9AAAAAAAAAACAF0S+9EiWvLrYIDtwGXA5bgcJPuPKU7oAAIA/AACAP2YGlzyJb7w/BZxfPoSQfD5/Eb6700oXPQAAAAAAAAAATZU4PqmYZ7yarwW7624aORffzL3YEio6AACAPwAAgD96xkO+nyGZPIYOKDzli3E8zvKdvny/gT0AAIA/AACAP53TbL4p51s/zbbSviBA1b7FiHK+x3IavgAAAAAAAAAAmqUZPTAa/T70T449ZRq9vmSovzvf9MM7AAAAAAAAAABqsIg+z11GPqFvj767J2a+BDjIvDbU4bkAAAAAAAAAAMZrJr7rnp49drwBPTPiYr4WQdu80sanPAAAAAAAAAAAWqJUvuFJyLzrb0k7x3e7OdwEMj5iLYO6AACAPwAAgD8AAiW929dRP0JuqrypCBq/6WwBvalchbwAAAAAAAAAAI06Nz43QhI+wrsBvsPBPb7dRow8BTU1vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVBAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEJjqUNayKOMAWyUS9qMAXSUR0CY00jJMg2ZdX2UKGgGR0BFmaNMoMKDaAdLvWgIR0CY1C5BTn7pdX2UKGgGR0BhzblHSWqtaAdN6ANoCEdAmNWRvFWGRHV9lChoBkdAZAJnBciW3WgHTegDaAhHQJkxnFDOTq11fZQoaAZHQHCoP6oESuhoB0v1aAhHQJkzgaisXBR1fZQoaAZHQHCsAfIS13NoB0vUaAhHQJk1Iyad+Xt1fZQoaAZHQHEsH/LkjopoB0v2aAhHQJk1bMkhRqJ1fZQoaAZHQHHBHKbKA8VoB00TAWgIR0CZNyIo3JgcdX2UKGgGR0BwnkrWiDdyaAdNAQFoCEdAmTeCXQdCFHV9lChoBkdAcLJRs/IKdGgHTQoBaAhHQJk4NinYQJ51fZQoaAZHQHCZ86NlyzZoB0vVaAhHQJk4OxHG0eF1fZQoaAZHQG6BVCgK4QVoB00CAWgIR0CZOJtLteD4dX2UKGgGR0Bv6+85CF9KaAdL+WgIR0CZOKON5t3wdX2UKGgGR0Bw3w9W6shgaAdNEQFoCEdAmTjIAXEZSHV9lChoBkdAa7ubDMvAXWgHS9toCEdAmTmIE0SAY3V9lChoBkdAcIAa4tpVTGgHS9RoCEdAmTr/DP4VRHV9lChoBkdAZBA/C66J7GgHTegDaAhHQJk7Cee4Cp51fZQoaAZHQHEwynYQJ5VoB00BAWgIR0CZOzXGwRoRdX2UKGgGR0BlyuCAc1fmaAdN6ANoCEdAmTvAnUlRg3V9lChoBkdAcX23h4t6HGgHS+RoCEdAmTywVbiZOXV9lChoBkdAbi1IczZYgmgHS+toCEdAmT5lcpsoD3V9lChoBkdAcHToDPnjhmgHS9NoCEdAmT7bfgrH2nV9lChoBkdAcER+wTufEmgHS9RoCEdAmT8RfnfVJHV9lChoBkdAZREM3qAz6GgHTegDaAhHQJk/zBrN4aB1fZQoaAZHQHIHSMLncL1oB0v5aAhHQJlAFxS5y2h1fZQoaAZHQHHEbCBPKuBoB0vVaAhHQJlBWqwQlKN1fZQoaAZHQHCRJXQtz0ZoB00MAWgIR0CZQZ2Rq46PdX2UKGgGR0BvYx6By0a7aAdL7WgIR0CZQiHymQ8wdX2UKGgGR0ByILV6NVBEaAdL7mgIR0CZQlNet0V8dX2UKGgGR0BjW5yp71IzaAdN6ANoCEdAmUKjKoybhHV9lChoBkdAcW9KCQLeAWgHS9ZoCEdAmUMqJyhi9nV9lChoBkdAcQVTVlPJrGgHTQMBaAhHQJlDfBFd9lV1fZQoaAZHQHME6ynk1dhoB0vUaAhHQJlEt8IAwPB1fZQoaAZHQG8O8I7eVLVoB0vdaAhHQJlFjkjopx51fZQoaAZHQHA9Tj3mFJxoB03TAWgIR0CZRghOxjaxdX2UKGgGR0BxED28IzFdaAdNBQFoCEdAmUZ9dZ7ojnV9lChoBkdAbke0SAYpD2gHS/JoCEdAmUbFSS/0unV9lChoBkdAcJk5dWyTp2gHS9doCEdAmUfa3d9DyHV9lChoBkdAcBaPZqVQh2gHS+RoCEdAmUgGsijcmHV9lChoBkdAcGcV2zOX3WgHS+RoCEdAmUj9r9ETg3V9lChoBkdAcZ6WMCLde2gHS99oCEdAmUkpazNUwXV9lChoBkdAb/vG+bmU4mgHS+BoCEdAmUpGbXpW3nV9lChoBkdAcG75WRzRyGgHS+5oCEdAmUxctTUAk3V9lChoBkdAcn0J/5LytmgHTWkBaAhHQJlNZ5Y5ksl1fZQoaAZHQHAngfhddE9oB0vtaAhHQJlOAXBP9DR1fZQoaAZHQHE0Et/WlM1oB0vpaAhHQJlObI/7iyZ1fZQoaAZHQHA75Oi35N5oB0vLaAhHQJlO1Ukv9Lp1fZQoaAZHQG2yr8zhxYJoB0vwaAhHQJlPAWac7Qt1fZQoaAZHQHFfIP5HmRxoB0vXaAhHQJlPZDBuXNV1fZQoaAZHQHBJDXjENvxoB0v3aAhHQJlReD/VAiV1fZQoaAZHQG9q2OQyRCBoB0v8aAhHQJlR2MLncL11fZQoaAZHQG7+GDL8rI5oB0vVaAhHQJlU6ePJaJR1fZQoaAZHQHBhqFIuoP1oB0v1aAhHQJlVBPKuB+Z1fZQoaAZHQHEveG47Rv5oB01FAWgIR0CZVcXmNipedX2UKGgGR0ByYvKuB+WoaAdL3GgIR0CZVd5OJtSAdX2UKGgGR0BvuR+YtxuLaAdLz2gIR0CZVdq/ub7TdX2UKGgGR0BgpY9Net0WaAdN6ANoCEdAmVX2ICU5dXV9lChoBkdAY0r225QP7WgHTegDaAhHQJlX0rd30PJ1fZQoaAZHQGGMVqFh5PdoB03oA2gIR0CZWHbM5fdAdX2UKGgGR0BwkUH9m6GyaAdNBAFoCEdAmVien/DLsHV9lChoBkdAcQvGQjlgdGgHTRIBaAhHQJlYrNyHVPN1fZQoaAZHQHBr/bGm1ploB0v1aAhHQJlZ/Rnezld1fZQoaAZHQHMsBI4EOiFoB0vIaAhHQJlbeVnmJWN1fZQoaAZHQDZPbTMJQchoB0vAaAhHQJlcQvalDWt1fZQoaAZHQG8PJrULDyhoB0vbaAhHQJldezOX3QF1fZQoaAZHQHD8llbu+h5oB0vwaAhHQJldeV1Oj7B1fZQoaAZHQG+geTNdJJ5oB0veaAhHQJldhgNPP9l1fZQoaAZHQHEKB8x9G7VoB0vkaAhHQJld4l/pdKN1fZQoaAZHQG9NY9Pk7wNoB0vVaAhHQJlhMG6f8Mx1fZQoaAZHQG8OccMmWt5oB0vgaAhHQJlhgtVaOgh1fZQoaAZHQHHmi97F85VoB00OAWgIR0CZYt/PPcBVdX2UKGgGR0BftiJCSidraAdN6ANoCEdAmWNmQwK0D3V9lChoBkdAcLpgv114gWgHTQgBaAhHQJlj3VLBbfR1fZQoaAZHQEJ0pMHryDtoB0uzaAhHQJlkMrPMSsd1fZQoaAZHQHGLROxjawloB00MAWgIR0CZZhJDVpbmdX2UKGgGR0BwaHoaDPGAaAdLyWgIR0CZZ6A+pwS8dX2UKGgGR0Bmb4m9g4OuaAdN6ANoCEdAmWgV3EAHV3V9lChoBkdAb0pgOz6acGgHS+xoCEdAmWj0pd8iOnV9lChoBkdAcml+xnnMdWgHTQsBaAhHQJlqW65Gz8h1fZQoaAZHQHGFHuNPxhFoB0vUaAhHQJlrqa+evp11fZQoaAZHQGOhReLNwBJoB03oA2gIR0CZbE+az/p/dX2UKGgGR0BxMSoJiRW+aAdLy2gIR0CZbPhbGFSLdX2UKGgGR0BxUeyJKraNaAdLvmgIR0CZbSqDbrTqdX2UKGgGR0BwGd2hZha1aAdL8GgIR0CZbiTq0MPSdX2UKGgGR0BvvD/ffoA5aAdL7GgIR0CZbtRhc7hfdX2UKGgGR0Btu5SgoPTYaAdL2GgIR0CZcCjCHh0hdX2UKGgGR0BIqqoybhFWaAdLtmgIR0CZc+P8Q7LddX2UKGgGR0BvB9NBWxQjaAdNEAFoCEdAmXQb4WUKRnV9lChoBkdAcTWiM5wOv2gHS/loCEdAmXRDRIBikXV9lChoBkdAb7eD6FdszmgHS+BoCEdAmXR1t4zJp3V9lChoBkdAbYlKZDzAe2gHS9RoCEdAmXVjE74i5nV9lChoBkdAcCJ1O0svqWgHS+toCEdAmXaaiGnGbXV9lChoBkdAY4ZreqJdjWgHTegDaAhHQJl3ljawljV1fZQoaAZHQG/htWEK3NNoB0viaAhHQJl3wYyfthN1fZQoaAZHQHDohp1zQu5oB00eAWgIR0CZeHQP7N0OdX2UKGgGR0ByicVdonKGaAdNJwFoCEdAmXmDebd8A3V9lChoBkdAcoiDF6zE8GgHTQwBaAhHQJl6E+HJtBR1fZQoaAZHQGAsT06HTJBoB03oA2gIR0CZenxN7BwddX2UKGgGR0Bu8kkUsWfsaAdLzGgIR0CZevF/hESedX2UKGgGR0BwAa+sYEW7aAdL9mgIR0CZfAoCuEEldWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
aditya-ppo-LL/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42a3785b63061a505d889cfe7446dec8fc2328653f84efd0f58904ef4389335b
|
3 |
+
size 87929
|
aditya-ppo-LL/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1d598086089c8ec89e655ce3e93bc18c7537780bf712af30f07cae299a5f702
|
3 |
+
size 43329
|
aditya-ppo-LL/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
aditya-ppo-LL/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fba64e9a680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fba64e9a710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fba64e9a7a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fba64e9a830>", "_build": "<function ActorCriticPolicy._build at 0x7fba64e9a8c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fba64e9a950>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fba64e9a9e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fba64e9aa70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fba64e9ab00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fba64e9ab90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fba64e9ac20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fba64e9acb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fba64e95c40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693767653263083092, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0CNL4cLFC86m9SPvD/CL77K7g9vcjiPgAAgD8AAAAAuuJaPs/EED3Nm3Y6VpJyOdYLpT5NndG5AACAPwAAgD/Nego9e36CujG6KrNEmJavFmxVusIgzjMAAIA/AACAP40/S76IqIY+uxOvPcpAZ77v2WO8rvYiOwAAAAAAAAAAtVuWvmYJgT+YQMC+7DUPvxhVgL4YBBe9AAAAAAAAAACAF0S+9EiWvLrYIDtwGXA5bgcJPuPKU7oAAIA/AACAP2YGlzyJb7w/BZxfPoSQfD5/Eb6700oXPQAAAAAAAAAATZU4PqmYZ7yarwW7624aORffzL3YEio6AACAPwAAgD96xkO+nyGZPIYOKDzli3E8zvKdvny/gT0AAIA/AACAP53TbL4p51s/zbbSviBA1b7FiHK+x3IavgAAAAAAAAAAmqUZPTAa/T70T449ZRq9vmSovzvf9MM7AAAAAAAAAABqsIg+z11GPqFvj767J2a+BDjIvDbU4bkAAAAAAAAAAMZrJr7rnp49drwBPTPiYr4WQdu80sanPAAAAAAAAAAAWqJUvuFJyLzrb0k7x3e7OdwEMj5iLYO6AACAPwAAgD8AAiW929dRP0JuqrypCBq/6WwBvalchbwAAAAAAAAAAI06Nz43QhI+wrsBvsPBPb7dRow8BTU1vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEJjqUNayKOMAWyUS9qMAXSUR0CY00jJMg2ZdX2UKGgGR0BFmaNMoMKDaAdLvWgIR0CY1C5BTn7pdX2UKGgGR0BhzblHSWqtaAdN6ANoCEdAmNWRvFWGRHV9lChoBkdAZAJnBciW3WgHTegDaAhHQJkxnFDOTq11fZQoaAZHQHCoP6oESuhoB0v1aAhHQJkzgaisXBR1fZQoaAZHQHCsAfIS13NoB0vUaAhHQJk1Iyad+Xt1fZQoaAZHQHEsH/LkjopoB0v2aAhHQJk1bMkhRqJ1fZQoaAZHQHHBHKbKA8VoB00TAWgIR0CZNyIo3JgcdX2UKGgGR0BwnkrWiDdyaAdNAQFoCEdAmTeCXQdCFHV9lChoBkdAcLJRs/IKdGgHTQoBaAhHQJk4NinYQJ51fZQoaAZHQHCZ86NlyzZoB0vVaAhHQJk4OxHG0eF1fZQoaAZHQG6BVCgK4QVoB00CAWgIR0CZOJtLteD4dX2UKGgGR0Bv6+85CF9KaAdL+WgIR0CZOKON5t3wdX2UKGgGR0Bw3w9W6shgaAdNEQFoCEdAmTjIAXEZSHV9lChoBkdAa7ubDMvAXWgHS9toCEdAmTmIE0SAY3V9lChoBkdAcIAa4tpVTGgHS9RoCEdAmTr/DP4VRHV9lChoBkdAZBA/C66J7GgHTegDaAhHQJk7Cee4Cp51fZQoaAZHQHEwynYQJ5VoB00BAWgIR0CZOzXGwRoRdX2UKGgGR0BlyuCAc1fmaAdN6ANoCEdAmTvAnUlRg3V9lChoBkdAcX23h4t6HGgHS+RoCEdAmTywVbiZOXV9lChoBkdAbi1IczZYgmgHS+toCEdAmT5lcpsoD3V9lChoBkdAcHToDPnjhmgHS9NoCEdAmT7bfgrH2nV9lChoBkdAcER+wTufEmgHS9RoCEdAmT8RfnfVJHV9lChoBkdAZREM3qAz6GgHTegDaAhHQJk/zBrN4aB1fZQoaAZHQHIHSMLncL1oB0v5aAhHQJlAFxS5y2h1fZQoaAZHQHHEbCBPKuBoB0vVaAhHQJlBWqwQlKN1fZQoaAZHQHCRJXQtz0ZoB00MAWgIR0CZQZ2Rq46PdX2UKGgGR0BvYx6By0a7aAdL7WgIR0CZQiHymQ8wdX2UKGgGR0ByILV6NVBEaAdL7mgIR0CZQlNet0V8dX2UKGgGR0BjW5yp71IzaAdN6ANoCEdAmUKjKoybhHV9lChoBkdAcW9KCQLeAWgHS9ZoCEdAmUMqJyhi9nV9lChoBkdAcQVTVlPJrGgHTQMBaAhHQJlDfBFd9lV1fZQoaAZHQHME6ynk1dhoB0vUaAhHQJlEt8IAwPB1fZQoaAZHQG8O8I7eVLVoB0vdaAhHQJlFjkjopx51fZQoaAZHQHA9Tj3mFJxoB03TAWgIR0CZRghOxjaxdX2UKGgGR0BxED28IzFdaAdNBQFoCEdAmUZ9dZ7ojnV9lChoBkdAbke0SAYpD2gHS/JoCEdAmUbFSS/0unV9lChoBkdAcJk5dWyTp2gHS9doCEdAmUfa3d9DyHV9lChoBkdAcBaPZqVQh2gHS+RoCEdAmUgGsijcmHV9lChoBkdAcGcV2zOX3WgHS+RoCEdAmUj9r9ETg3V9lChoBkdAcZ6WMCLde2gHS99oCEdAmUkpazNUwXV9lChoBkdAb/vG+bmU4mgHS+BoCEdAmUpGbXpW3nV9lChoBkdAcG75WRzRyGgHS+5oCEdAmUxctTUAk3V9lChoBkdAcn0J/5LytmgHTWkBaAhHQJlNZ5Y5ksl1fZQoaAZHQHAngfhddE9oB0vtaAhHQJlOAXBP9DR1fZQoaAZHQHE0Et/WlM1oB0vpaAhHQJlObI/7iyZ1fZQoaAZHQHA75Oi35N5oB0vLaAhHQJlO1Ukv9Lp1fZQoaAZHQG2yr8zhxYJoB0vwaAhHQJlPAWac7Qt1fZQoaAZHQHFfIP5HmRxoB0vXaAhHQJlPZDBuXNV1fZQoaAZHQHBJDXjENvxoB0v3aAhHQJlReD/VAiV1fZQoaAZHQG9q2OQyRCBoB0v8aAhHQJlR2MLncL11fZQoaAZHQG7+GDL8rI5oB0vVaAhHQJlU6ePJaJR1fZQoaAZHQHBhqFIuoP1oB0v1aAhHQJlVBPKuB+Z1fZQoaAZHQHEveG47Rv5oB01FAWgIR0CZVcXmNipedX2UKGgGR0ByYvKuB+WoaAdL3GgIR0CZVd5OJtSAdX2UKGgGR0BvuR+YtxuLaAdLz2gIR0CZVdq/ub7TdX2UKGgGR0BgpY9Net0WaAdN6ANoCEdAmVX2ICU5dXV9lChoBkdAY0r225QP7WgHTegDaAhHQJlX0rd30PJ1fZQoaAZHQGGMVqFh5PdoB03oA2gIR0CZWHbM5fdAdX2UKGgGR0BwkUH9m6GyaAdNBAFoCEdAmVien/DLsHV9lChoBkdAcQvGQjlgdGgHTRIBaAhHQJlYrNyHVPN1fZQoaAZHQHBr/bGm1ploB0v1aAhHQJlZ/Rnezld1fZQoaAZHQHMsBI4EOiFoB0vIaAhHQJlbeVnmJWN1fZQoaAZHQDZPbTMJQchoB0vAaAhHQJlcQvalDWt1fZQoaAZHQG8PJrULDyhoB0vbaAhHQJldezOX3QF1fZQoaAZHQHD8llbu+h5oB0vwaAhHQJldeV1Oj7B1fZQoaAZHQG+geTNdJJ5oB0veaAhHQJldhgNPP9l1fZQoaAZHQHEKB8x9G7VoB0vkaAhHQJld4l/pdKN1fZQoaAZHQG9NY9Pk7wNoB0vVaAhHQJlhMG6f8Mx1fZQoaAZHQG8OccMmWt5oB0vgaAhHQJlhgtVaOgh1fZQoaAZHQHHmi97F85VoB00OAWgIR0CZYt/PPcBVdX2UKGgGR0BftiJCSidraAdN6ANoCEdAmWNmQwK0D3V9lChoBkdAcLpgv114gWgHTQgBaAhHQJlj3VLBbfR1fZQoaAZHQEJ0pMHryDtoB0uzaAhHQJlkMrPMSsd1fZQoaAZHQHGLROxjawloB00MAWgIR0CZZhJDVpbmdX2UKGgGR0BwaHoaDPGAaAdLyWgIR0CZZ6A+pwS8dX2UKGgGR0Bmb4m9g4OuaAdN6ANoCEdAmWgV3EAHV3V9lChoBkdAb0pgOz6acGgHS+xoCEdAmWj0pd8iOnV9lChoBkdAcml+xnnMdWgHTQsBaAhHQJlqW65Gz8h1fZQoaAZHQHGFHuNPxhFoB0vUaAhHQJlrqa+evp11fZQoaAZHQGOhReLNwBJoB03oA2gIR0CZbE+az/p/dX2UKGgGR0BxMSoJiRW+aAdLy2gIR0CZbPhbGFSLdX2UKGgGR0BxUeyJKraNaAdLvmgIR0CZbSqDbrTqdX2UKGgGR0BwGd2hZha1aAdL8GgIR0CZbiTq0MPSdX2UKGgGR0BvvD/ffoA5aAdL7GgIR0CZbtRhc7hfdX2UKGgGR0Btu5SgoPTYaAdL2GgIR0CZcCjCHh0hdX2UKGgGR0BIqqoybhFWaAdLtmgIR0CZc+P8Q7LddX2UKGgGR0BvB9NBWxQjaAdNEAFoCEdAmXQb4WUKRnV9lChoBkdAcTWiM5wOv2gHS/loCEdAmXRDRIBikXV9lChoBkdAb7eD6FdszmgHS+BoCEdAmXR1t4zJp3V9lChoBkdAbYlKZDzAe2gHS9RoCEdAmXVjE74i5nV9lChoBkdAcCJ1O0svqWgHS+toCEdAmXaaiGnGbXV9lChoBkdAY4ZreqJdjWgHTegDaAhHQJl3ljawljV1fZQoaAZHQG/htWEK3NNoB0viaAhHQJl3wYyfthN1fZQoaAZHQHDohp1zQu5oB00eAWgIR0CZeHQP7N0OdX2UKGgGR0ByicVdonKGaAdNJwFoCEdAmXmDebd8A3V9lChoBkdAcoiDF6zE8GgHTQwBaAhHQJl6E+HJtBR1fZQoaAZHQGAsT06HTJBoB03oA2gIR0CZenxN7BwddX2UKGgGR0Bu8kkUsWfsaAdLzGgIR0CZevF/hESedX2UKGgGR0BwAa+sYEW7aAdL9mgIR0CZfAoCuEEldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (167 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.8559576, "std_reward": 18.36296052328365, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-03T19:31:26.565418"}
|